OFFSET
0,3
REFERENCES
Mark A. Shattuck and Carl G. Wagner, Parity Theorems for Statistics on Lattice Paths and Laguerre Distributions, Research Report, Mathematics Department, University of Tennessee, Knoxville, TN, 2004
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..445
Mark A. Shattuck and Carl G. Wagner, Parity Theorems for Statistics on Lattice Paths and Laguerre Configurations, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.1.
FORMULA
E.g.f.: cosh(x*(1-x^2)^(-1/2)) + (1-x^2)^(1/2)*(1-x)^(-1)*sinh(x*(1-x^2)^(-1/2)).
Recurrence: (8*n^2 - 56*n + 61)*a(n) = (8*n^2 - 80*n + 147)*a(n-1) + (24*n^4 - 256*n^3 + 863*n^2 - 1061*n + 258)*a(n-2) - 2*(n-2)*(8*n^3 - 96*n^2 + 305*n - 239)*a(n-3) - (n-3)*(n-2)*(24*n^4 - 320*n^3 + 1431*n^2 - 2295*n + 639)*a(n-4) + (n-5)*(n-4)*(n-3)*(n-2)*(8*n^2 - 64*n + 71)*a(n-5) + (n-6)*(n-5)^2*(n-4)*(n-3)*(n-2)*(8*n^2 - 40*n + 13)*a(n-6). - Vaclav Kotesovec, Nov 14 2017
a(n) ~ exp(3*n^(1/3)/2 - n) * n^n / sqrt(3). - Vaclav Kotesovec, Nov 14 2017
EXAMPLE
a(3)=7 because there are 9 distributions of balls 1,2,3 with weight 0: 123,132,213,231,312,321,12-3,13-2 and 1-2-3 and 2 distributions of weight 1:1-23 and 1-32 (dashes separate contents-ordered urns)
MATHEMATICA
nmax = 20; CoefficientList[Series[Cosh[x/Sqrt[1 - x^2]] + Sqrt[1 - x^2] * Sinh[x/Sqrt[1 - x^2]] / (1-x), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 14 2017 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace(cosh(x*(1-x^2)^(-1/2)) + (1-x^2)^(1/2)*(1-x)^(-1)*sinh(x*(1-x^2)^(-1/2)))) \\ G. C. Greubel, May 23 2018
(Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Cosh(x*(1-x^2)^(-1/2)) + (1-x^2)^(1/2)*(1-x)^(-1)*Sinh(x*(1-x^2)^(-1/2)))); [Factorial(n-1)*b[n]: n in [1..m]];
CROSSREFS
KEYWORD
nonn
AUTHOR
Carl G. Wagner (wagner(AT)math.utk.edu), Jan 15 2004
EXTENSIONS
More terms from Vaclav Kotesovec, Nov 14 2017
STATUS
approved