login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089656
Given a distribution of n balls, labeled 1,...,n, among n unlabeled contents-ordered urns, arrange the nonempty urns in increasing order of their initial elements: U_1,...U_k and sum the quantities (i-1)(card U_i - 1) for i=1,...,k to get the "weight" of this distribution. These numbers represent the number of distributions of even weight minus the number with odd weight.
1
1, 1, 3, 7, 41, 161, 1387, 7687, 86865, 623233, 8682131, 76586951, 1265108473, 13257387937, 252846968571, 3071345365831, 66334014084257, 916952261126657, 22098449760227875, 342676322992004743, 9109114481334332361, 156647957565343927201
OFFSET
0,3
REFERENCES
Mark A. Shattuck and Carl G. Wagner, Parity Theorems for Statistics on Lattice Paths and Laguerre Distributions, Research Report, Mathematics Department, University of Tennessee, Knoxville, TN, 2004
LINKS
Mark A. Shattuck and Carl G. Wagner, Parity Theorems for Statistics on Lattice Paths and Laguerre Configurations, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.1.
FORMULA
E.g.f.: cosh(x*(1-x^2)^(-1/2)) + (1-x^2)^(1/2)*(1-x)^(-1)*sinh(x*(1-x^2)^(-1/2)).
Recurrence: (8*n^2 - 56*n + 61)*a(n) = (8*n^2 - 80*n + 147)*a(n-1) + (24*n^4 - 256*n^3 + 863*n^2 - 1061*n + 258)*a(n-2) - 2*(n-2)*(8*n^3 - 96*n^2 + 305*n - 239)*a(n-3) - (n-3)*(n-2)*(24*n^4 - 320*n^3 + 1431*n^2 - 2295*n + 639)*a(n-4) + (n-5)*(n-4)*(n-3)*(n-2)*(8*n^2 - 64*n + 71)*a(n-5) + (n-6)*(n-5)^2*(n-4)*(n-3)*(n-2)*(8*n^2 - 40*n + 13)*a(n-6). - Vaclav Kotesovec, Nov 14 2017
a(n) ~ exp(3*n^(1/3)/2 - n) * n^n / sqrt(3). - Vaclav Kotesovec, Nov 14 2017
EXAMPLE
a(3)=7 because there are 9 distributions of balls 1,2,3 with weight 0: 123,132,213,231,312,321,12-3,13-2 and 1-2-3 and 2 distributions of weight 1:1-23 and 1-32 (dashes separate contents-ordered urns)
MATHEMATICA
nmax = 20; CoefficientList[Series[Cosh[x/Sqrt[1 - x^2]] + Sqrt[1 - x^2] * Sinh[x/Sqrt[1 - x^2]] / (1-x), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 14 2017 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace(cosh(x*(1-x^2)^(-1/2)) + (1-x^2)^(1/2)*(1-x)^(-1)*sinh(x*(1-x^2)^(-1/2)))) \\ G. C. Greubel, May 23 2018
(Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Cosh(x*(1-x^2)^(-1/2)) + (1-x^2)^(1/2)*(1-x)^(-1)*Sinh(x*(1-x^2)^(-1/2)))); [Factorial(n-1)*b[n]: n in [1..m]];
CROSSREFS
Sequence in context: A071730 A058815 A333649 * A018970 A018968 A018969
KEYWORD
nonn
AUTHOR
Carl G. Wagner (wagner(AT)math.utk.edu), Jan 15 2004
EXTENSIONS
More terms from Vaclav Kotesovec, Nov 14 2017
STATUS
approved