login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Given a distribution of n balls, labeled 1,...,n, among n unlabeled contents-ordered urns, arrange the nonempty urns in increasing order of their initial elements: U_1,...U_k and sum the quantities (i-1)(card U_i - 1) for i=1,...,k to get the "weight" of this distribution. These numbers represent the number of distributions of even weight minus the number with odd weight.
1

%I #16 Sep 08 2022 08:45:12

%S 1,1,3,7,41,161,1387,7687,86865,623233,8682131,76586951,1265108473,

%T 13257387937,252846968571,3071345365831,66334014084257,

%U 916952261126657,22098449760227875,342676322992004743,9109114481334332361,156647957565343927201

%N Given a distribution of n balls, labeled 1,...,n, among n unlabeled contents-ordered urns, arrange the nonempty urns in increasing order of their initial elements: U_1,...U_k and sum the quantities (i-1)(card U_i - 1) for i=1,...,k to get the "weight" of this distribution. These numbers represent the number of distributions of even weight minus the number with odd weight.

%D Mark A. Shattuck and Carl G. Wagner, Parity Theorems for Statistics on Lattice Paths and Laguerre Distributions, Research Report, Mathematics Department, University of Tennessee, Knoxville, TN, 2004

%H G. C. Greubel, <a href="/A089656/b089656.txt">Table of n, a(n) for n = 0..445</a>

%H Mark A. Shattuck and Carl G. Wagner, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL8/Shattuck2/shattuck44.html">Parity Theorems for Statistics on Lattice Paths and Laguerre Configurations</a>, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.1.

%F E.g.f.: cosh(x*(1-x^2)^(-1/2)) + (1-x^2)^(1/2)*(1-x)^(-1)*sinh(x*(1-x^2)^(-1/2)).

%F Recurrence: (8*n^2 - 56*n + 61)*a(n) = (8*n^2 - 80*n + 147)*a(n-1) + (24*n^4 - 256*n^3 + 863*n^2 - 1061*n + 258)*a(n-2) - 2*(n-2)*(8*n^3 - 96*n^2 + 305*n - 239)*a(n-3) - (n-3)*(n-2)*(24*n^4 - 320*n^3 + 1431*n^2 - 2295*n + 639)*a(n-4) + (n-5)*(n-4)*(n-3)*(n-2)*(8*n^2 - 64*n + 71)*a(n-5) + (n-6)*(n-5)^2*(n-4)*(n-3)*(n-2)*(8*n^2 - 40*n + 13)*a(n-6). - _Vaclav Kotesovec_, Nov 14 2017

%F a(n) ~ exp(3*n^(1/3)/2 - n) * n^n / sqrt(3). - _Vaclav Kotesovec_, Nov 14 2017

%e a(3)=7 because there are 9 distributions of balls 1,2,3 with weight 0: 123,132,213,231,312,321,12-3,13-2 and 1-2-3 and 2 distributions of weight 1:1-23 and 1-32 (dashes separate contents-ordered urns)

%t nmax = 20; CoefficientList[Series[Cosh[x/Sqrt[1 - x^2]] + Sqrt[1 - x^2] * Sinh[x/Sqrt[1 - x^2]] / (1-x), {x, 0, nmax}], x] * Range[0, nmax]! (* _Vaclav Kotesovec_, Nov 14 2017 *)

%o (PARI) x='x+O('x^30); Vec(serlaplace(cosh(x*(1-x^2)^(-1/2)) + (1-x^2)^(1/2)*(1-x)^(-1)*sinh(x*(1-x^2)^(-1/2)))) \\ _G. C. Greubel_, May 23 2018

%o (Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Cosh(x*(1-x^2)^(-1/2)) + (1-x^2)^(1/2)*(1-x)^(-1)*Sinh(x*(1-x^2)^(-1/2)))); [Factorial(n-1)*b[n]: n in [1..m]];

%K nonn

%O 0,3

%A Carl G. Wagner (wagner(AT)math.utk.edu), Jan 15 2004

%E More terms from _Vaclav Kotesovec_, Nov 14 2017