The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053526 Number of bipartite graphs with 3 edges on nodes {1..n}. 5
 0, 0, 0, 0, 16, 110, 435, 1295, 3220, 7056, 14070, 26070, 45540, 75790, 121121, 187005, 280280, 409360, 584460, 817836, 1124040, 1520190, 2026255, 2665355, 3464076, 4452800, 5666050, 7142850, 8927100, 11067966, 13620285 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 REFERENCES R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.5. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Chai Wah Wu, Graphs whose normalized Laplacian matrices are separable as density matrices in quantum mechanics, arXiv:1407.5663 [quant-ph], 2014. Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1). FORMULA a(n) = (n-3)*(n-2)*(n-1)*n*(n^2 + 3*n + 4)/48. G.f.: x^4*(16-2*x+x^2)/(1-x)^7. - Colin Barker, May 08 2012 E.g.f.: x^4*(32 + 12*x + x^2)*exp(x)/48. - G. C. Greubel, May 15 2019 MATHEMATICA Table[Binomial[n, 4]*(n^2+3*n+4)/2, {n, 0, 40}] (* G. C. Greubel, May 15 2019 *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 0, 0, 16, 110, 435}, 40] (* Harvey P. Dale, Nov 24 2022 *) PROG (PARI) {a(n) = binomial(n, 4)*(n^2+3*n+4)/2}; \\ G. C. Greubel, May 15 2019 (Magma) [Binomial(n, 4)*(n^2+3*n+4)/2: n in [0..40]]; // G. C. Greubel, May 15 2019 (Sage) [binomial(n, 4)*(n^2+3*n+4)/2 for n in (0..40)] # G. C. Greubel, May 15 2019 (GAP) List([0..40], n-> Binomial(n, 4)*(n^2+3*n+4)/2) # G. C. Greubel, May 15 2019 CROSSREFS Column k=3 of A117279. Cf. A000217 (1 edge), A050534 (2 edges). Sequence in context: A238171 A155871 A120668 * A107908 A177046 A234250 Adjacent sequences: A053523 A053524 A053525 * A053527 A053528 A053529 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Jan 16 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 15:25 EST 2023. Contains 367610 sequences. (Running on oeis4.)