login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053526 Number of bipartite graphs with 3 edges on nodes {1..n}. 5
0, 0, 0, 0, 16, 110, 435, 1295, 3220, 7056, 14070, 26070, 45540, 75790, 121121, 187005, 280280, 409360, 584460, 817836, 1124040, 1520190, 2026255, 2665355, 3464076, 4452800, 5666050, 7142850, 8927100, 11067966, 13620285 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

REFERENCES

R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.5.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Chai Wah Wu, Graphs whose normalized Laplacian matrices are separable as density matrices in quantum mechanics, arXiv:1407.5663 [quant-ph], 2014

Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).

FORMULA

a(n) = (n-3)*(n-2)*(n-1)*n*(n^2 + 3*n + 4)/48.

G.f.: x^4*(16-2*x+x^2)/(1-x)^7. - Colin Barker, May 08 2012

E.g.f.: x^4*(32 + 12*x + x^2)*exp(x)/48. - G. C. Greubel, May 15 2019

MATHEMATICA

Table[Binomial[n, 4]*(n^2+3*n+4)/2, {n, 0, 40}] (* G. C. Greubel, May 15 2019 *)

PROG

(PARI) {a(n) = binomial(n, 4)*(n^2+3*n+4)/2}; \\ G. C. Greubel, May 15 2019

(MAGMA) [Binomial(n, 4)*(n^2+3*n+4)/2: n in [0..40]]; // G. C. Greubel, May 15 2019

(Sage) [binomial(n, 4)*(n^2+3*n+4)/2 for n in (0..40)] # G. C. Greubel, May 15 2019

(GAP) List([0..40], n-> Binomial(n, 4)*(n^2+3*n+4)/2) # G. C. Greubel, May 15 2019

CROSSREFS

Cf. A000217 (1 edge), A050534 (2 edges).

Sequence in context: A238171 A155871 A120668 * A107908 A177046 A234250

Adjacent sequences:  A053523 A053524 A053525 * A053527 A053528 A053529

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Jan 16 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 14 00:07 EDT 2021. Contains 342941 sequences. (Running on oeis4.)