|
|
A053526
|
|
Number of bipartite graphs with 3 edges on nodes {1..n}.
|
|
5
|
|
|
0, 0, 0, 0, 16, 110, 435, 1295, 3220, 7056, 14070, 26070, 45540, 75790, 121121, 187005, 280280, 409360, 584460, 817836, 1124040, 1520190, 2026255, 2665355, 3464076, 4452800, 5666050, 7142850, 8927100, 11067966, 13620285
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
REFERENCES
|
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.5.
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..1000
Chai Wah Wu, Graphs whose normalized Laplacian matrices are separable as density matrices in quantum mechanics, arXiv:1407.5663 [quant-ph], 2014.
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
|
|
FORMULA
|
a(n) = (n-3)*(n-2)*(n-1)*n*(n^2 + 3*n + 4)/48.
G.f.: x^4*(16-2*x+x^2)/(1-x)^7. - Colin Barker, May 08 2012
E.g.f.: x^4*(32 + 12*x + x^2)*exp(x)/48. - G. C. Greubel, May 15 2019
|
|
MATHEMATICA
|
Table[Binomial[n, 4]*(n^2+3*n+4)/2, {n, 0, 40}] (* G. C. Greubel, May 15 2019 *)
|
|
PROG
|
(PARI) {a(n) = binomial(n, 4)*(n^2+3*n+4)/2}; \\ G. C. Greubel, May 15 2019
(MAGMA) [Binomial(n, 4)*(n^2+3*n+4)/2: n in [0..40]]; // G. C. Greubel, May 15 2019
(Sage) [binomial(n, 4)*(n^2+3*n+4)/2 for n in (0..40)] # G. C. Greubel, May 15 2019
(GAP) List([0..40], n-> Binomial(n, 4)*(n^2+3*n+4)/2) # G. C. Greubel, May 15 2019
|
|
CROSSREFS
|
Column k=3 of A117279.
Cf. A000217 (1 edge), A050534 (2 edges).
Sequence in context: A238171 A155871 A120668 * A107908 A177046 A234250
Adjacent sequences: A053523 A053524 A053525 * A053527 A053528 A053529
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane, Jan 16 2000
|
|
STATUS
|
approved
|
|
|
|