Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Jul 26 2018 16:59:33
%S 1,2,3,3,10,14,25,95,176,424,120,721,3269,1050,6406,21202,12712,42561,
%T 178443,141876,436402,1622798,1418400,151200,3628801,17064179,
%U 17061660,2162160,48073796,177093256,212254548,41580000,479001601,2293658861,2735287698,719072640
%N Triangular array read by rows: T(n,k) is the number of n-permutations that have exactly k distinct cycle lengths.
%C T(A000217(n),n) gives A246292. - _Alois P. Heinz_, Aug 21 2014
%H Alois P. Heinz, <a href="/A218868/b218868.txt">Rows n = 1..170, flattened</a>
%H P. Flajolet and R. Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html">Analytic Combinatorics</a>, Cambridge University Press, 2009
%F E.g.f.: Product_{i>=1} (1 + y*exp(x^i/i) - y).
%e : 1;
%e : 2;
%e : 3, 3;
%e : 10, 14;
%e : 25, 95;
%e : 176, 424, 120;
%e : 721, 3269, 1050;
%e : 6406, 21202, 12712;
%e : 42561, 178443, 141876;
%e : 436402, 1622798, 1418400, 151200;
%p with(combinat):
%p b:= proc(n, i) option remember; expand(`if`(n=0, 1,
%p `if`(i<1, 0, add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
%p b(n-i*j, i-1)*`if`(j=0, 1, x), j=0..n/i))))
%p end:
%p T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2)):
%p seq(T(n), n=1..16); # _Alois P. Heinz_, Aug 21 2014
%t nn=10;a=Product[1-y+y Exp[x^i/i],{i,1,nn}];f[list_]:=Select[list,#>0&];Map[f,Drop[Range[0,nn]!CoefficientList[Series[a ,{x,0,nn}],{x,y}],1]]//Grid
%Y Columns k=1-3 give: A005225, A005772, A133119.
%Y Row sums are: A000142.
%Y Row lengths are: A003056.
%Y Cf. A208437, A242027 (the same for endofunctions), A246292, A317327.
%K nonn,tabf
%O 1,2
%A _Geoffrey Critzer_, Nov 07 2012