login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208437
Triangular array read by rows: T(n,k) is the number of set partitions of {1,2,...,n} that have exactly k distinct block sizes.
7
1, 2, 2, 3, 5, 10, 2, 50, 27, 116, 60, 2, 560, 315, 142, 1730, 2268, 282, 6123, 14742, 1073, 30122, 72180, 12600, 2, 116908, 464640, 97020, 32034, 507277, 2676366, 997920, 2, 2492737, 16400098, 8751600, 136853, 15328119, 94209206, 81225144, 1527528, 56182092, 673282610, 614128515, 37837800
OFFSET
1,2
COMMENTS
Column 1 = A038041.
Column 2 = A088142.
Column 3 = A133118.
Row sums = A000110 (Bell numbers).
Row n has floor([sqrt(1+8n)-1]/2) terms (number of terms increases by one at each triangular number). - Franklin T. Adams-Watters, Feb 26 2012
LINKS
Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 180.
FORMULA
E.g.f.: Product_{i>=1} 1 + y *(exp(x^i/i!)-1).
T(n*(n+1)/2,n) = A022915(n). - Alois P. Heinz, Apr 08 2016
EXAMPLE
: 1;
: 2;
: 2, 3;
: 5, 10;
: 2, 50;
: 27, 116, 60;
: 2, 560, 315;
: 142, 1730, 2268;
: 282, 6123, 14742;
: 1073, 30122, 72180, 12600;
MAPLE
with(combinat):
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i-1)*`if`(j=0, 1, x), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2)):
seq(T(n), n=1..16); # Alois P. Heinz, Aug 21 2014
MATHEMATICA
nn = 15; p = Product[1 + y (Exp[x^i/i!] - 1), {i, 1, nn}]; f[list_] := Select[list, # > 0 &];
Map[f, Drop[ Range[0, nn]! CoefficientList[Series[p, {x, 0, nn}], {x, y}], 1]] // Flatten
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Feb 26 2012
STATUS
approved