login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133118
Number of partitions of n-set with 3 block sizes.
2
60, 315, 2268, 14742, 72180, 464640, 2676366, 16400098, 94209206, 673282610, 4095231104, 29371828846, 197547348216, 1513916607683, 10904464442572, 87070803499372, 673555061736062, 5718121102062336, 47028289679340734, 418812093667530755, 3680961843042545490, 34161428275433710485
OFFSET
6,1
LINKS
FORMULA
We obtain e.g.f. for number of partitions of n-set with m block sizes if we substitute x(i) with -Sum_{k>0} (1-exp(x^k/k!))^i in cycle index Z(S(m); x(1),x(2),...,x(n)) of symmetric group S(m) of degree m.
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Prepend[Table[i, {j}], n - i*j]]/j!*b[n - i*j, i - 1]*If[j == 0, 1, x], {j, 0, n/i}]]];
a[n_] := Coefficient[b[n, n], x, 3];
Array[a, 22, 6] (* Jean-François Alcover, May 24 2019, after Alois P. Heinz in A208437 *)
CROSSREFS
Column k=3 of A208437.
Sequence in context: A063497 A096363 A033591 * A211336 A092478 A228889
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Sep 18 2007
EXTENSIONS
More terms from Max Alekseyev, Jun 17 2011
STATUS
approved