login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354239
Expansion of e.g.f. (2 - exp(x))^(x/2).
2
1, 0, -1, -3, -9, -35, -195, -1477, -13839, -151335, -1877745, -26022491, -398318481, -6674043961, -121496905803, -2387748622365, -50382638237343, -1136006690370371, -27257495551671753, -693436310776781083, -18643640290958926785, -528196548501606911913
OFFSET
0,4
FORMULA
a(0) = 1; a(n) = (-1/2) * Sum_{k=1..n} A052862(k) * binomial(n-1,k-1) * a(n-k).
a(n) ~ -n! / (Gamma(1 - log(2)/2) * 2^(1 - log(2)/2) * n^(log(2)/2 + 1) * log(2)^(n - log(2)/2 - 1)). - Vaclav Kotesovec, Jun 08 2022
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace((2-exp(x))^(x/2)))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-sum(j=1, i, j*sum(k=1, j-1, (k-1)!*stirling(j-1, k, 2))*binomial(i-1, j-1)*v[i-j+1])/2); v;
CROSSREFS
Sequence in context: A005346 A129094 A059424 * A002575 A125792 A223310
KEYWORD
sign
AUTHOR
Seiichi Manyama, May 26 2022
STATUS
approved