The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A354239 Expansion of e.g.f. (2 - exp(x))^(x/2). 2
 1, 0, -1, -3, -9, -35, -195, -1477, -13839, -151335, -1877745, -26022491, -398318481, -6674043961, -121496905803, -2387748622365, -50382638237343, -1136006690370371, -27257495551671753, -693436310776781083, -18643640290958926785, -528196548501606911913 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Table of n, a(n) for n=0..21. FORMULA a(0) = 1; a(n) = (-1/2) * Sum_{k=1..n} A052862(k) * binomial(n-1,k-1) * a(n-k). a(n) ~ -n! / (Gamma(1 - log(2)/2) * 2^(1 - log(2)/2) * n^(log(2)/2 + 1) * log(2)^(n - log(2)/2 - 1)). - Vaclav Kotesovec, Jun 08 2022 PROG (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace((2-exp(x))^(x/2))) (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-sum(j=1, i, j*sum(k=1, j-1, (k-1)!*stirling(j-1, k, 2))*binomial(i-1, j-1)*v[i-j+1])/2); v; CROSSREFS Cf. A052862, A354412. Sequence in context: A005346 A129094 A059424 * A002575 A125792 A223310 Adjacent sequences: A354236 A354237 A354238 * A354240 A354241 A354242 KEYWORD sign AUTHOR Seiichi Manyama, May 26 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 19:40 EST 2023. Contains 367526 sequences. (Running on oeis4.)