OFFSET
0,2
COMMENTS
From Peter Bala, Jul 07 2022: (Start)
Conjecture: Let k be a positive integer. The sequence obtained by reducing a(n) modulo k is eventually periodic with the period dividing phi(k) = A000010(k). For example, modulo 16 we obtain the sequence [1, 2, 14, 14, 6, 14, 6, 14, 6, ...], with an apparent period of 2 beginning at a(3). Cf. A354253.
More generally, we conjecture that the same property holds for integer sequences having an e.g.f. of the form G(exp(x) - 1), where G(x) is an integral power series. (End)
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..360
FORMULA
E.g.f.: Sum_{k>=0} binomial(2*k,k) * (exp(x) - 1)^k.
a(n) = Sum_{k=0..n} (2*k)! * Stirling2(n,k)/k!.
a(n) ~ sqrt(2/5) * n^n / (exp(n) * log(5/4)^(n + 1/2)). - Vaclav Kotesovec, Jun 04 2022
Conjectural o.g.f. as a continued fraction of Stieltjes type: 1/(1 - 2*x/(1 - 5*x/(1 - 6*x/(1 - 10*x/(1 - 10*x/(1 - 15*x/(1 - ... - (4*n-2)*x/(1 - 5*n*x/(1 - ...))))))))). - Peter Bala, Jul 07 2022
a(0) = 1; a(n) = Sum_{k=1..n} (4 - 2*k/n) * binomial(n,k) * a(n-k). - Seiichi Manyama, Sep 09 2023
a(0) = 1; a(n) = 2*a(n-1) - 5*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 16 2023
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/sqrt(5-4*exp(x))))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, binomial(2*k, k)*(exp(x)-1)^k)))
(PARI) a(n) = sum(k=0, n, (2*k)!*stirling(n, k, 2)/k!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 20 2022
STATUS
approved