login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218295
G.f. satisfies: A(x) = 1 + Sum_{n>=1} 2*x^n * A(x)^(3*n^2).
1
1, 2, 14, 158, 2274, 37410, 670670, 12786622, 255519106, 5302716866, 113586849614, 2501007496542, 56446396937186, 1303401799574242, 30756416720161422, 741216834445478270, 18240706372460480002, 458484823574294544770, 11776969626284389958030
OFFSET
0,2
COMMENTS
Given g.f. A(x), then Q = A(-x^2) satisfies:
Q = (1-x)*Sum_{n>=0} x^n*Product_{k=1..n} (1 - x*Q^(3*k))/(1 + x*Q^(3*k))
due to a q-series expansion for the Jacobi theta_4 function.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 14*x^2 + 158*x^3 + 2274*x^4 + 37410*x^5 +...
where
A(x) = 1 + 2*x*A(x)^3 + 2*x^2*A(x)^12 + 2*x^3*A(x)^27 + 2*x^4*A(x)^48 + ...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, 2*x^m*(A+x*O(x^n))^(3*m^2))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A332693 A196791 A349312 * A354242 A268011 A052112
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 26 2012
STATUS
approved