login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A218294 G.f. satisfies: A(x) = 1 + Sum_{n>=1} 2*x^n * A(x)^(2*n^2). 1
1, 2, 10, 82, 866, 10482, 138698, 1957346, 29024642, 448005922, 7153738058, 117681081522, 1988787934818, 34465473701522, 611806834645642, 11118408274591938, 206835953956603394, 3939803761941599042, 76880490874588995978, 1538019374456939130386 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Given g.f. A(x), then Q = A(-x^2) satisfies:
Q = (1-x)*Sum_{n>=0} x^n*Product_{k=1..n} (1 - x*Q^(2*k))/(1 + x*Q^(2*k))
due to a q-series expansion for the Jacobi theta_4 function.
LINKS
EXAMPLE
G.f.: A(x) = 1 + 2*x + 10*x^2 + 82*x^3 + 866*x^4 + 10482*x^5 + 138698*x^6 +...
where
A(x) = 1 + 2*x*A(x)^2 + 2*x^2*A(x)^8 + 2*x^3*A(x)^18 + 2*x^4*A(x)^32 + ...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, 2*x^m*(A+x*O(x^n))^(2*m^2))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A231919 A174962 A062396 * A286797 A321089 A112487
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 26 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 3 04:18 EST 2024. Contains 370499 sequences. (Running on oeis4.)