login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218294
G.f. satisfies: A(x) = 1 + Sum_{n>=1} 2*x^n * A(x)^(2*n^2).
1
1, 2, 10, 82, 866, 10482, 138698, 1957346, 29024642, 448005922, 7153738058, 117681081522, 1988787934818, 34465473701522, 611806834645642, 11118408274591938, 206835953956603394, 3939803761941599042, 76880490874588995978, 1538019374456939130386
OFFSET
0,2
COMMENTS
Given g.f. A(x), then Q = A(-x^2) satisfies:
Q = (1-x)*Sum_{n>=0} x^n*Product_{k=1..n} (1 - x*Q^(2*k))/(1 + x*Q^(2*k))
due to a q-series expansion for the Jacobi theta_4 function.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 10*x^2 + 82*x^3 + 866*x^4 + 10482*x^5 + 138698*x^6 +...
where
A(x) = 1 + 2*x*A(x)^2 + 2*x^2*A(x)^8 + 2*x^3*A(x)^18 + 2*x^4*A(x)^32 + ...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, 2*x^m*(A+x*O(x^n))^(2*m^2))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A231919 A174962 A062396 * A286797 A321089 A112487
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 26 2012
STATUS
approved