login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286797
Row sums of A286796.
6
1, 2, 10, 82, 898, 12018, 187626, 3323682, 65607682, 1424967394, 33736908874, 864372576626, 23825543471234, 703074672632018, 22118247888976170, 739081808704195650, 26146116129400483842, 976382058777174451650, 38386296866727499728522, 1584986693941237056394386
OFFSET
0,2
LINKS
Luca G. Molinari, Nicola Manini, Enumeration of many-body skeleton diagrams, arXiv:cond-mat/0512342 [cond-mat.str-el], 2006.
FORMULA
a(n) = Sum_{k=0..n} A286796(n,k).
a(n) ~ 2^(n + 5/2) * n^(n+2) / exp(n+2). - Vaclav Kotesovec, Mar 08 2022
MATHEMATICA
max = 20; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = (1 + x*(1 + 2*t + x*t^2)*y0[x, t]^2 + t*(1 - t)*x^2*y0[x, t]^3 + 2*x^2*y0[x, t]*D[y0[x, t], x])/(1 + 2*x*t) + O[x]^n // Normal // Simplify; y0[x_, t_] = y1[x, t]];
a[n_] := CoefficientList[SeriesCoefficient[y0[x, t]/(1 - x*t*y0[x, t]), {x, 0, n}], t] // Total;
Table[a[n], {n, 0, max-1}] (* Jean-François Alcover, May 24 2017, adapted from PARI *)
PROG
(PARI)
A286795_ser(N, t='t) = {
my(x='x+O('x^N), y0=1, y1=0, n=1);
while(n++,
y1 = (1 + x*(1 + 2*t + x*t^2)*y0^2 + t*(1-t)*x^2*y0^3 + 2*x^2*y0*y0');
y1 = y1 / (1+2*x*t); if (y1 == y0, break()); y0 = y1; ); y0;
};
A286796_ser(N, t='t) = my(v=A286795_ser(N, t)); v/(1-x*t*v);
Vec(A286796_ser(20, 1))
(PARI)
A049464_ser(N) = { \\ for A049464(0)=0
my(s=Ser(concat(1, vector(N+1, n, (2*n)!/(2^n*n!)))), g=(1/s - 1/s^2)/x);
1 - 1/subst(g, 'x, serreverse(x*g^2*s^2));
};
A286797_ser(N) = my(q=A049464_ser(N)); q/(x-x*q);
Vec(A286797_ser(20))
CROSSREFS
Cf. A286796.
Sequence in context: A174962 A062396 A218294 * A321089 A112487 A089469
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, May 21 2017
STATUS
approved