login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Row sums of A286796.
6

%I #17 Mar 08 2022 14:17:24

%S 1,2,10,82,898,12018,187626,3323682,65607682,1424967394,33736908874,

%T 864372576626,23825543471234,703074672632018,22118247888976170,

%U 739081808704195650,26146116129400483842,976382058777174451650,38386296866727499728522,1584986693941237056394386

%N Row sums of A286796.

%H Gheorghe Coserea, <a href="/A286797/b286797.txt">Table of n, a(n) for n = 0..200</a>

%H Luca G. Molinari, Nicola Manini, <a href="https://arxiv.org/abs/cond-mat/0512342">Enumeration of many-body skeleton diagrams</a>, arXiv:cond-mat/0512342 [cond-mat.str-el], 2006.

%F a(n) = Sum_{k=0..n} A286796(n,k).

%F a(n) ~ 2^(n + 5/2) * n^(n+2) / exp(n+2). - _Vaclav Kotesovec_, Mar 08 2022

%t max = 20; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = (1 + x*(1 + 2*t + x*t^2)*y0[x, t]^2 + t*(1 - t)*x^2*y0[x, t]^3 + 2*x^2*y0[x, t]*D[y0[x, t], x])/(1 + 2*x*t) + O[x]^n // Normal // Simplify; y0[x_, t_] = y1[x, t]];

%t a[n_] := CoefficientList[SeriesCoefficient[y0[x, t]/(1 - x*t*y0[x, t]), {x, 0, n}], t] // Total;

%t Table[a[n], {n, 0, max-1}] (* _Jean-François Alcover_, May 24 2017, adapted from PARI *)

%o (PARI)

%o A286795_ser(N, t='t) = {

%o my(x='x+O('x^N), y0=1, y1=0, n=1);

%o while(n++,

%o y1 = (1 + x*(1 + 2*t + x*t^2)*y0^2 + t*(1-t)*x^2*y0^3 + 2*x^2*y0*y0');

%o y1 = y1 / (1+2*x*t); if (y1 == y0, break()); y0 = y1;); y0;

%o };

%o A286796_ser(N,t='t) = my(v=A286795_ser(N,t)); v/(1-x*t*v);

%o Vec(A286796_ser(20,1))

%o (PARI)

%o A049464_ser(N) = { \\ for A049464(0)=0

%o my(s=Ser(concat(1, vector(N+1, n, (2*n)!/(2^n*n!)))), g=(1/s - 1/s^2)/x);

%o 1 - 1/subst(g, 'x, serreverse(x*g^2*s^2));

%o };

%o A286797_ser(N) = my(q=A049464_ser(N)); q/(x-x*q);

%o Vec(A286797_ser(20))

%Y Cf. A286796.

%K nonn

%O 0,2

%A _Gheorghe Coserea_, May 21 2017