|
|
|
|
1, 1, 6, 49, 542, 7278, 113824, 2017881, 39842934, 865391422, 20486717908, 524816312106, 14463876594476, 426759508580416, 13423937511765492, 448515527244396873, 15865571912065180326, 592432249691301719190, 23290086526099237126180, 961614574423928988516286, 41607005553456012247259844
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
MATHEMATICA
|
max = 22; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = 1 + x y0[x, t]^2 + 3 t x^3 y0[x, t]^2 D[y0[x, t], x] + x^2 (2 y0[x, t] D[y0[x, t], x] + t (2 y0[x, t]^3 - D[y0[x, t], x] + y0[x, t] D[y0[x, t], x])) + O[x]^n // Normal // Simplify; y0[x_, t_] = y1[x, t]];
P[n_, t_] := Coefficient[y0[x, t] , x, n];
a[n_] := CoefficientList[P[n, t], t] // Total;
|
|
PROG
|
(PARI)
my(x='x+O('x^N), y0=1, y1=0, n=1);
while(n++,
y1 = (1 + x*(1 + 2*t + x*t^2)*y0^2 + t*(1-t)*x^2*y0^3 + 2*x^2*y0*y0');
y1 = y1 / (1+2*x*t); if (y1 == y0, break()); y0 = y1; ); y0;
};
my(v = A286795_ser(N, t)); subst(v, 'x, serreverse(x/(1-x*t*v)));
};
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|