login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321089
G.f.: Sum_{n>=0} ((1+x)^(n+1) - 1)^n.
1
1, 2, 10, 82, 928, 13406, 235690, 4883702, 116548222, 3148151702, 94950591878, 3162966582742, 115334767261792, 4569294561813770, 195438629679894238, 8975996556375735458, 440572146080811981406, 23015418712779922737206, 1274980039012724226987966, 74655326188457739033712062, 4607114081638141934903219532, 298862442692043953057588327202
OFFSET
0,2
LINKS
FORMULA
Sum_{n>=0} (1+x)^(n*(n+1)) / (1 + (1+x)^n)^(n+1).
a(n) ~ c * d^n * n! / sqrt(n), where d = A317855 = 3.1610886538654288138301722... and c = 0.8785394171057422507960514834733179025314463... - Vaclav Kotesovec, Oct 04 2020
EXAMPLE
G.f.: A(x) = 1 + 2*x + 10*x^2 + 82*x^3 + 928*x^4 + 13406*x^5 + 235690*x^6 + 4883702*x^7 + 116548222*x^8 + ...
PROG
(PARI) {a(n) = polcoeff( sum(k=0, n, ((1+x +x*O(x^n))^(k+1) - 1)^k), n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* From e.g.f. infinite series: */
\p200 \\ set precision
{A = Vec(round( sum(n=0, 600, 1./(1 + (1+x +O(x^26))^(-n))^(n+1)) ))}
for(n=0, #A-1, print1(A[n+1], ", "))
CROSSREFS
Sequence in context: A062396 A218294 A286797 * A112487 A089469 A375867
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 04 2018
STATUS
approved