login
A321091
Continued fraction expansion of the constant z that satisfies: CF(3*z, n) = CF(z, n) + 10, for n >= 0, where CF(z, n) denotes the n-th partial denominator in the continued fraction expansion of z.
10
4, 1, 2, 3, 2, 1, 3, 2, 1, 3, 1, 2, 3, 1, 2, 3, 2, 1, 3, 1, 2, 3, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 3, 2, 1, 3, 1, 2, 3, 2, 1, 3, 2, 1, 3, 1, 2, 3, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 3, 2, 1, 3, 1, 2, 3, 2, 1, 3, 2, 1, 3, 1, 2, 3, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 3, 2, 1, 3, 1, 2, 3, 1, 2, 3, 2, 1, 3, 1, 2, 3, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 3, 2, 1, 3, 1, 2, 3, 1, 2, 3, 2, 1, 3, 1, 2, 3, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 3, 2, 1, 3, 1, 2, 3, 2, 1, 3, 2, 1, 3, 1, 2, 3, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 3, 2, 1, 3, 1, 2, 3, 1, 2, 3, 2, 1, 3, 1, 2, 3, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 3, 2, 1, 3, 1, 2
OFFSET
0,1
LINKS
FORMULA
Formula for terms:
(1) a(0) = 4,
(2) a(3*n) = 3 for n >= 1,
(3) a(3*n+2) = 3 - a(3*n+1) for n >= 0,
(4) a(9*n+1) = 1 for n >= 0,
(5) a(9*n+7) = 2 for n >= 0,
(6) a(9*n+4) = 3 - a(3*n+1) for n >= 0.
a(3*n+1) = A189706(n+1) + 1 for n >= 0.
a(n) = A321090(n) + 1 for n >= 1, with a(0) = 4.
a(n) = A321093(n) - A321090(n), for n >= 0.
a(n) = A321095(n) - 2*A321090(n), for n >= 0.
a(n) = A321097(n) - 3*A321090(n), for n >= 0.
EXAMPLE
The decimal expansion of this constant z begins:
z = 4.69674328597002790903797135061489969596768903498266...
The simple continued fraction expansion of z begins:
z = [4; 1, 2, 3, 2, 1, 3, 2, 1, 3, 1, 2, 3, 1, 2, 3, ..., a(n), ...];
such that the simple continued fraction expansion of 3*z begins:
3*z = [14; 11, 12, 13, 12, 11, 13, 12, 11, 13, 11, 12, ..., a(n) + 10, ...].
RELATED CONTINUED FRACTIONS.
Continued fractions for z/2 and z/3 are also interesting:
z/2 = [2; 2, 1, 6, 1, 2, 1, 1, 2, 8, 2, 1, 1, 2, 1, 6, 1, 2, 1, 1, 5, 1, 1, 5, 1, 1, 2, 8, 2, 1, 1, 5, 1, 1, 5, 1, 1, 2, 1, 6, 1, 2, 1, 1, 2, 8, 2, ...];
z/3 = [1; 1, 1, 3, 3, 4, 1, 8, 2, 1, 3, 2, 1, 3, 3, 4, 1, 4, 3, 8, 1, 8, 2, 1, 3, 3, 4, 1, 8, 2, 1, 3, 3, 4, 1, 8, 2, 1, 3, 2, 1, 3, 3, 4, 1, 4, 3, 3, ...].
EXTENDED TERMS.
The initial 1020 terms of the continued fraction of z are
Z = [4;1,2,3,2,1,3,2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,
2,1,3,2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,2,1,3,
2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,2,1,3,2,1,3,
1,2,3,1,2,3,2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,
1,2,3,2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,2,1,3,
2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,1,2,3,2,1,3,
1,2,3,1,2,3,2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,
1,2,3,2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,1,2,3,
2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,1,2,3,2,1,3,
1,2,3,2,1,3,2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,
2,1,3,2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,2,1,3,
2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,2,1,3,2,1,3,
1,2,3,2,1,3,2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,
2,1,3,2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,1,2,3,
2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,1,2,3,2,1,3,
1,2,3,1,2,3,2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,
1,2,3,2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,1,2,3,
2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,1,2,3,2,1,3,
1,2,3,2,1,3,2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,
2,1,3,2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,2,1,3,
2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,2,1,3,2,1,3,
1,2,3,2,1,3,2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,
1,2,3,2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,1,2,3,
2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,2,1,3,2,1,3,
1,2,3,1,2,3,2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,
1,2,3,2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,1,2,3,
2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,1,2,3,2,1,3,
1,2,3,2,1,3,2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,
2,1,3,2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,2,1,3,
2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,2,1,3,2,1,3,
1,2,3,1,2,3,2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,
1,2,3,2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,2,1,3,
2,1,3,1,2,3,1,2,3,2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,1,2,3,2,1,3,
1,2,3,1,2,3,2,1,3,1,2,3,2,1,3,2,1,3,1,2,3,2,1,3,2,1,3,1,2,3, ...].
...
The initial 1000 digits in the decimal expansion of z are
z = 4.69674328597002790903797135061489969596768903498266\
39744976065876894930180599498227467938788452668766\
73554337379179728087710868220957908662613614032798\
33388405727520089133825065104553063833471857236781\
30005222692602670820049366351838443544785254486817\
36713432024147916330132466297271088195927148747751\
61081134504127224293197514421215072180791056995531\
25282254039576642227973626045065085745006810232418\
31151864601858865871496634133860069172907530299184\
80599130262819282015136761682297696200354791299160\
72099154048193374507277756176907149849150248588944\
75702959853076891940422757945105365738782828309624\
89182729519410181321396021772327752921026193693551\
52235778358918181495624102484144418903334090227672\
68450214362152729231740655406007216125545132538964\
63321922981643984915752295515263408732183582572996\
74985150593020685391286450747231245540741605404683\
64053241113305130300450809189365250050022411738651\
75283281124343007394094179023437577924273245108697\
96469643376214173186511094645179990191104328112759...
...
GENERATING METHOD.
Start with CF = [4] and repeat (PARI code):
{M = contfracpnqn(CF + vector(#CF,i, 10));
z = (1/3)*M[1,1]/M[2,1]; CF = contfrac(z)}
This method can be illustrated as follows.
z0 = [4] = 4 ;
z1 = (1/3)*[14] = [4; 1, 2] = 14/3 ;
z2 = (1/3)*[14; 11, 12] = [4, 1, 2, 3, 2, 1, 3, 3] = 1874/399 ;
z3 = (1/3)*[14; 11, 12, 13, 12, 11, 13, 13] = [4; 1, 2, 3, 2, 1, 3, 2, 1, 3, 1, 2, 3, 1, 2, 3, 2, 1, 3, 1, 2, 4] = 187227588/39863279 ;
z4 = (1/3)*[14; 11, 12, 13, 12, 11, 13, 12, 11, 13, 11, 12, 13, 11, 12, 13, 12, 11, 13, 11, 12, 14] = [4; 1, 2, 3, 2, 1, 3, 2, 1, 3, 1, 2, 3, 1, 2, 3, 2, 1, 3, 1, 2, 3, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 3, 2, 1, 3, 1, 2, 3, 2, 1, 3, 2, 1, 3, 1, 2, 3, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 3, 2, 1, 4] = 254413274852180460063336/54168017999228580539039 ; ...
where this constant z equals the limit of the iterations of the above process.
PROG
(PARI) /* Generate over 5000 terms */
{CF=[4]; for(i=1, 8, M = contfracpnqn( CF + vector(#CF, i, 10) ); z = (1/3)*M[1, 1]/M[2, 1]; CF = contfrac(z) )}
for(n=0, 200, print1(CF[n+1], ", "))
KEYWORD
nonn,cofr
AUTHOR
Paul D. Hanna, Oct 27 2018
STATUS
approved