login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321090
Sequence {a(n), n>=0} satisfying the continued fraction relation: if z = [a(0) + 1; a(1) + 1, a(2) + 1, a(3) + 1, ..., a(n) + 1, ...], then 3*z = [a(0) + 9; a(1) + 11, a(2) + 11, a(3) + 11, ..., a(n) + 11, ...].
11
2, 0, 1, 2, 1, 0, 2, 1, 0, 2, 0, 1, 2, 0, 1, 2, 1, 0, 2, 0, 1, 2, 0, 1, 2, 1, 0, 2, 0, 1, 2, 1, 0, 2, 1, 0, 2, 0, 1, 2, 1, 0, 2, 1, 0, 2, 0, 1, 2, 0, 1, 2, 1, 0, 2, 0, 1, 2, 1, 0, 2, 1, 0, 2, 0, 1, 2, 1, 0, 2, 1, 0, 2, 0, 1, 2, 0, 1, 2, 1, 0, 2, 0, 1, 2, 1, 0, 2, 1, 0, 2, 0, 1, 2, 0, 1, 2, 1, 0, 2, 0, 1, 2, 0, 1, 2, 1, 0, 2, 0, 1, 2, 1, 0, 2, 1, 0, 2, 0, 1, 2, 0, 1, 2, 1, 0, 2, 0, 1, 2, 0, 1, 2, 1, 0, 2, 0, 1, 2, 1, 0, 2, 1, 0, 2, 0, 1, 2, 1, 0, 2, 1, 0, 2, 0, 1, 2, 0, 1, 2, 1, 0, 2, 0, 1, 2, 1, 0, 2, 1, 0, 2, 0, 1, 2, 0, 1, 2, 1, 0, 2, 0, 1, 2, 0, 1, 2, 1, 0, 2, 0, 1, 2, 1, 0, 2, 1, 0, 2, 0, 1
OFFSET
0,1
COMMENTS
a(n) = 2 - A321100(n) for n >= 0.
a(3*n+1) = A189706(n+1) for n >= 0.
A321091(n) = a(n) + 1 for n >= 1.
A321093(n) = 2*a(n) + 1 for n >= 1.
A321095(n) = 3*a(n) + 1 for n >= 1.
A321097(n) = 4*a(n) + 1 for n >= 1.
LINKS
FORMULA
CONTINUED FRACTION RELATION - this sequence {a(n), n>=0} satisfies:
(1) If X(k,n) = [k*a(0) + n; k*a(1) + n, k*a(2) + n, k*a(3) + n, ...],
then (n^2 + k*n + 1)*X(k,n) = [k*a(0) + m-k-n; k*a(1) + m, k*a(2) + m, k*a(3) + m, ...], where m = n^3 + 3*k*n^2 + (2*k^2 + 3)*n + 2*k, for n >= 0, k >= 0.
(2) If y(n) = [a(0) + n; a(1) + n, a(2) + n, a(3) + n, ...]
then (n^2 + n + 1)*y(n) = [a(0) + m-n-1; a(1) + m, a(2) + m, a(3) + m, ...], where m = n^3 + 3*n^2 + 5*n + 2, for n >= 0 (note special case at n=0).
(3) If z(n) = [n*a(0) + 1; n*a(1) + 1, n*a(2) + 1, n*a(3) + 1, ...],
then (n + 2)*z(n) = [n*a(0) + m-n-1; n*a(1) + m, n*a(2) + m, n*a(3) + m, ...], where m = 2*n^2 + 5*n + 4, for n >= 0.
FORMULA FOR TERMS: for n >= 0,
(1) a(3*n) = 2,
(2) a(3*n+2) = 1 - a(3*n+1),
(3) a(9*n+1) = 0,
(4) a(9*n+7) = 1,
(5) a(9*n+4) = 1 - a(3*n+1).
EXAMPLE
ILLUSTRATION 1 OF CONTINUED FRACTION PROPERTY.
Define y(n) = [a(0) + n; a(1) + n, a(2) + n, a(3) + n, ...]
then (n^2 + n + 1)*y(n) = [a(0) + m-n-1; a(1) + m, a(2) + m, a(3) + m, ...], where m = n^3 + 3*n^2 + 5*n + 2, for n >= 0 (note special case at n=0).
EXAMPLES of constants y(n) and respective continued fractions for initial n are as follows.
CASE n = 0.
y(0) = 3.43303149449604468606582652632993270180568661743523717776168...
Allowing for zero partial denominators in the continued fraction,
y(0) = [2; 0, 1, 2, 1, 0, 2, 1, 0, 2, 0, 1, 2, 0, ..., a(n) + 0, ...];
the simple continued fraction expansion of y(0) rewrites this as
y(0) = [3; 2, 3, 4, 3, 2, 4, 3, 2, 4, 2, 3, 4, 2, ..., a(n) + 2, ...].
CASE n = 1.
y(1) = 3.69674328597002790903797135061489969596768903498266397449760...
y(1) = [3; 1, 2, 3, 2, 1, 3, 2, 1, 3, 1, 2, 3, 1, ..., a(n) + 1, ...],
3*y(1) = [11; 11, 12, 13, 12, 11, 13, 12, 11, 13, ..., a(n) + 11, ...].
CASE n = 2.
y(2) = 4.43303149449604468606582652632993270180568661743523717776168...
y(2) = [4; 2, 3, 4, 3, 2, 4, 3, 2, 4, 2, 3, 4, 2, ..., a(n) + 2, ...],
7*y(2) = [31; 32, 33, 34, 33, 32, 34, 33, 32, 34, ..., a(n) + 32, ...].
CASE n = 3.
y(3) = 5.30877551945535750122355554493187782342126930062870320137262...
y(3) = [5; 3, 4, 5, 4, 3, 5, 4, 3, 5, 3, 4, 5, 3, ..., a(n) + 3, ...],
13*y(3) = [69; 71, 72, 73, 72, 71, 73, 72, 71, 73, ..., a(n) + 71, ...].
CASE n = 4.
y(4) = 6.23845058448006611462883411378241316742379547477181191240204...
y(4) = [6; 4, 5, 6, 5, 4, 6, 5, 4, 6, 4, 5, 6, 4, ..., a(n) + 4, ...],
21*y(4) = [131; 134, 135, 136, 135, 134, 136, 135, ..., a(n) + 134, ...].
etc.
ILLUSTRATION 2 OF CONTINUED FRACTION PROPERTY.
Define z(n) = [n*a(0) + 1; n*a(1) + 1, n*a(2) + 1, n*a(3) + 1, ...],
then (n + 2)*z(n) = [n*a(0) + m-n-1; n*a(1) + m, n*a(2) + m, n*a(3) + m, ...], where m = 2*n^2 + 5*n + 4, for n >= 0;
EXAMPLES of constants z(n) and respective continued fractions for initial n are as follows.
CASE n = 0.
z(0) = 1.6180339887498948482045868343... = (1 + sqrt(5))/2 ;
z(0) = [1; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ..., 0*a(n) + 1, ...];
2*z(0) = [3; 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, ..., 0*a(n) + 4, ...].
CASE n = 1.
z(1) = 3.696743285970027909037971350614899695967689034... (A321092 - 1)
z(1) = [3; 1, 2, 3, 2, 1, 3, 2, 1, 3, 1, 2, 3, 1, ..., 1*a(n) + 1, ...];
3*z(1) = [11; 11, 12, 13, 12, 11, 13, 12, 11, 13, ..., 1*a(n) + 11, ...].
CASE n = 2.
z(2) = 5.761342189260052577009778722181649926352515102... (A321094 - 1)
z(2) = [5; 1, 3, 5, 3, 1, 5, 3, 1, 5, 1, 3, 5, 1, ..., 2*a(n) + 1, ...];
4*z(2) = [23; 22, 24, 26, 24, 22, 26, 24, 22, 26, ..., 2*a(n) + 22, ...].
CASE n = 3.
z(3) = 7.805401757688663373476939995437639876411562871... (A321096 - 1)
z(3) = [7; 1, 4, 7, 4, 1, 7, 4, 1, 7, 1, 4, 7, 1, ..., 3*a(n) + 1, ...];
5*z(3) = [39; 37, 40, 43, 40, 37, 43, 40, 37, 43, ..., 3*a(n) + 37, ...].
CASE n = 4.
z(4) = 9.836308638532504943187035876427127876597685953... (A321098 - 1)
z(4) = [9; 1, 5, 9, 5, 1, 9, 5, 1, 9, 1, 5, 9, 1, ..., 4*a(n) + 1, ...];
6*z(4) = [59; 56, 60, 64, 60, 56, 64, 60, 56, 64, ..., 4*a(n) + 56, ...].
etc.
EXTENDED TERMS.
The initial 1020 terms of this sequence are as follows.
A = [2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,
2,1,0,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,
2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,
2,0,1,2,0,1,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,
2,0,1,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,1,0,
2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,
2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,
2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,
2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,0,1,2,1,0,
2,0,1,2,1,0,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,
2,1,0,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,
2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,
2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,
2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,
2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,
2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,
2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,0,1,
2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,
2,0,1,2,1,0,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,
2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,
2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,
2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,
2,0,1,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,
2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,1,0,2,1,0,
2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,
2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,
2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,
2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,
2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,
2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,
2,0,1,2,0,1,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,
2,0,1,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,1,0,
2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,
2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1, ...].
...
PROG
(PARI) /* Generate over 5000 terms */
{CF=[4]; for(i=1, 8, M = contfracpnqn( CF + vector(#CF, i, 10) ); z = (1/3)*M[1, 1]/M[2, 1]; CF = contfrac(z) )}
for(n=0, 200, print1(CF[n+1]-1-0^n, ", "))
(PARI) /* Using formula for individual terms */
{a(n) = if(n%3==0, 2,
if(n%3==2, 1 - a(n-1),
if(n%9==1, 0,
if(n%9==7, 1,
if(n%9==4, 1 - a((n-1)/3) )))))}
for(n=0, 200, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 27 2018
EXTENSIONS
Revised example and comments sections. - Paul D. Hanna, Nov 03 2018
STATUS
approved