login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321100
Sequence {a(n), n>=0} satisfying the continued fraction relation: if z = [a(0) + 1; a(1) + 1, a(2) + 1, a(3) + 1, ..., a(n) + 1, ...], then 7*z = [a(0) + 9; a(1) + 11, a(2) + 11, a(3) + 11, ..., a(n) + 11, ...].
1
0, 2, 1, 0, 1, 2, 0, 1, 2, 0, 2, 1, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 1, 2, 0, 2, 1, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 1, 2, 0, 2, 1, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 1, 2, 0, 2, 1, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 1, 2, 0, 2, 1, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 1, 2, 0, 2, 1, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 1, 2, 0, 2, 1, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 1, 2, 0, 2, 1
OFFSET
0,2
COMMENTS
a(n) = 2 - A321090(n), for n >= 0.
FORMULA
CONTINUED FRACTION RELATION - this sequence {a(n), n>=0} satisfies:
If y(k,n) = [k*a(0) + n; k*a(1) + n, k*a(2) + n, k*a(3) + n, ...],
then (n^2 + 3*k*n + 2*k^2 + 1)*y(k,n) = [k*a(0) + m-k-n; k*a(1) + m, k*a(2) + m, k*a(3) + m, ...], where m = n^3 + 3*k*n^2 + (2*k^2 + 3)*n + 2*k, for n >= 0, k >= 0.
FORMULA FOR TERMS: for n >= 0,
(1) a(3*n) = 0,
(2) a(3*n+2) = 3 - a(3*n+1),
(3) a(9*n+1) = 2,
(4) a(9*n+7) = 1,
(5) a(9*n+4) = 3 - a(3*n+1).
EXAMPLE
ILLUSTRATION OF CONTINUED FRACTION PROPERTY.
Define y(k,n) = [k*a(0) + n; k*a(1) + n, k*a(2) + n, k*a(3) + n, ...],
then
(n^2 + 3*k*n + 2*k^2 + 1) * X(k,n) = [k*a(0) + m-k-n; k*a(1) + m, k*a(2) + m, k*a(3) + m, ...], where m = n^3 + 3*k*n^2 + (2*k^2 + 3)*n + 2*k, for n >= 0, k >= 0.
EXAMPLES of constants y(k,n) and respective continued fractions for initial k and n are as follows.
CASE k = 1, n = 1.
y(1,1) = 1.29663382206594201985347001536274116440601452468308746847...
y(1,1) = [1; 3, 2, 1, 2, 3, 1, 2, 3, 1, 3, 2, 1, 3, ..., a(n) + 1, ...],
7*y(1,1) = [9; 13, 12, 11, 12, 13, 11, 12, 13, 11, ..., a(n) + 11, ...].
CASE k = 1, n = 2.
y(1,2) = 2.23302966146823013079630091558411348943843779308298734989...
y(1,2) = [2; 4, 3, 2, 3, 4, 2, 3, 4, 2, 4, 3, 2, 4, ..., a(n) + 2, ...].
13*y(1,2) = [29; 34, 33, 32, 33, 34, 32, 33, 34, 32, ..., a(n) + 32, ...].
CASE k = 1, n = 3.
y(1,3) = 3.19112838213609195362054670452820227524052071087999217614...
y(1,3) = [3; 5, 4, 3, 4, 5, 3, 4, 5, 3, 5, 4, 3, 5, ..., a(n) + 3, ...].
21*y(1,3) = [67; 73, 72, 71, 72, 73, 71, 72, 73, 71, ..., a(n) + 71, ...].
CASE k = 2, n = 1.
y(2,1) = 1.18990000724532672619738638935609891545233786934727750160...
y(2,1) = [1; 5, 3, 1, 3, 5, 1, 3, 5, 1, 5, 3, 1, 5, ..., 2*a(n) + 1, ...].
16*y(2,1) = [19; 26, 24, 22, 24, 26, 22, 24, 26, 22, ..., 2*a(n) + 22, ...].
CASE k = 3, n = 1.
y(3,1) = 1.13873249345174370130452490021023011324120719384639850933...
y(3,1) = [1; 7, 4, 1, 4, 7, 1, 4, 7, 1, 7, 4, 1, 7, ..., 3*a(n) + 1, ...].
29*y(3,1) = [33; 43, 40, 37, 40, 43, 37, 40, 43, 37, ..., 3*a(n) + 37, ...].
CASE k = 3, n = 2.
y(3,2) = 2.12220007282539436078116266359839811814939013508321100093...
y(3,2) = [2; 8, 5, 2, 5, 8, 2, 5, 8, 2, 8, 5, 2, 8, ..., 3*a(n) + 2, ...].
41*y(3,2) = [87; 98, 95, 92, 95, 98, 92, 95, 98, 92, ..., 3*a(n) + 92, ...].
PROG
(PARI) /* Generate over 5000 terms */
{CF=[1]; for(i=1, 8, M = contfracpnqn( CF + vector(#CF, i, if(i==1, 8, 10)) ); z = (1/7)*M[1, 1]/M[2, 1]; CF = contfrac(z) )}
for(n=0, 200, print1(CF[n+1] - 1, ", "))
(PARI) /* Using formula for terms */
{a(n) = if(n%3==0, 0,
if(n%3==2, 3 - a(n-1),
if(n%9==1, 2,
if(n%9==7, 1,
if(n%9==4, 3 - a((n-1)/3) )))))}
for(n=0, 200, print1(a(n), ", "))
CROSSREFS
Cf. A321090.
Sequence in context: A069842 A083056 A356733 * A244422 A061896 A366793
KEYWORD
nonn,cofr
AUTHOR
Paul D. Hanna, Nov 03 2018
STATUS
approved