Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Nov 05 2018 21:17:38
%S 0,2,1,0,1,2,0,1,2,0,2,1,0,2,1,0,1,2,0,2,1,0,2,1,0,1,2,0,2,1,0,1,2,0,
%T 1,2,0,2,1,0,1,2,0,1,2,0,2,1,0,2,1,0,1,2,0,2,1,0,1,2,0,1,2,0,2,1,0,1,
%U 2,0,1,2,0,2,1,0,2,1,0,1,2,0,2,1,0,1,2,0,1,2,0,2,1,0,2,1,0,1,2,0,2,1,0,2,1,0,1,2,0,2,1,0,1,2,0,1,2,0,2,1,0,2,1,0,1,2,0,2,1,0,2,1,0,1,2,0,2,1,0,1,2,0,1,2,0,2,1,0,1,2,0,1,2,0,2,1,0,2,1,0,1,2,0,2,1,0,1,2,0,1,2,0,2,1,0,2,1,0,1,2,0,2,1,0,2,1,0,1,2,0,2,1,0,1,2,0,1,2,0,2,1
%N Sequence {a(n), n>=0} satisfying the continued fraction relation: if z = [a(0) + 1; a(1) + 1, a(2) + 1, a(3) + 1, ..., a(n) + 1, ...], then 7*z = [a(0) + 9; a(1) + 11, a(2) + 11, a(3) + 11, ..., a(n) + 11, ...].
%C a(n) = 2 - A321090(n), for n >= 0.
%F CONTINUED FRACTION RELATION - this sequence {a(n), n>=0} satisfies:
%F If y(k,n) = [k*a(0) + n; k*a(1) + n, k*a(2) + n, k*a(3) + n, ...],
%F then (n^2 + 3*k*n + 2*k^2 + 1)*y(k,n) = [k*a(0) + m-k-n; k*a(1) + m, k*a(2) + m, k*a(3) + m, ...], where m = n^3 + 3*k*n^2 + (2*k^2 + 3)*n + 2*k, for n >= 0, k >= 0.
%F FORMULA FOR TERMS: for n >= 0,
%F (1) a(3*n) = 0,
%F (2) a(3*n+2) = 3 - a(3*n+1),
%F (3) a(9*n+1) = 2,
%F (4) a(9*n+7) = 1,
%F (5) a(9*n+4) = 3 - a(3*n+1).
%e ILLUSTRATION OF CONTINUED FRACTION PROPERTY.
%e Define y(k,n) = [k*a(0) + n; k*a(1) + n, k*a(2) + n, k*a(3) + n, ...],
%e then
%e (n^2 + 3*k*n + 2*k^2 + 1) * X(k,n) = [k*a(0) + m-k-n; k*a(1) + m, k*a(2) + m, k*a(3) + m, ...], where m = n^3 + 3*k*n^2 + (2*k^2 + 3)*n + 2*k, for n >= 0, k >= 0.
%e EXAMPLES of constants y(k,n) and respective continued fractions for initial k and n are as follows.
%e CASE k = 1, n = 1.
%e y(1,1) = 1.29663382206594201985347001536274116440601452468308746847...
%e y(1,1) = [1; 3, 2, 1, 2, 3, 1, 2, 3, 1, 3, 2, 1, 3, ..., a(n) + 1, ...],
%e 7*y(1,1) = [9; 13, 12, 11, 12, 13, 11, 12, 13, 11, ..., a(n) + 11, ...].
%e CASE k = 1, n = 2.
%e y(1,2) = 2.23302966146823013079630091558411348943843779308298734989...
%e y(1,2) = [2; 4, 3, 2, 3, 4, 2, 3, 4, 2, 4, 3, 2, 4, ..., a(n) + 2, ...].
%e 13*y(1,2) = [29; 34, 33, 32, 33, 34, 32, 33, 34, 32, ..., a(n) + 32, ...].
%e CASE k = 1, n = 3.
%e y(1,3) = 3.19112838213609195362054670452820227524052071087999217614...
%e y(1,3) = [3; 5, 4, 3, 4, 5, 3, 4, 5, 3, 5, 4, 3, 5, ..., a(n) + 3, ...].
%e 21*y(1,3) = [67; 73, 72, 71, 72, 73, 71, 72, 73, 71, ..., a(n) + 71, ...].
%e CASE k = 2, n = 1.
%e y(2,1) = 1.18990000724532672619738638935609891545233786934727750160...
%e y(2,1) = [1; 5, 3, 1, 3, 5, 1, 3, 5, 1, 5, 3, 1, 5, ..., 2*a(n) + 1, ...].
%e 16*y(2,1) = [19; 26, 24, 22, 24, 26, 22, 24, 26, 22, ..., 2*a(n) + 22, ...].
%e CASE k = 3, n = 1.
%e y(3,1) = 1.13873249345174370130452490021023011324120719384639850933...
%e y(3,1) = [1; 7, 4, 1, 4, 7, 1, 4, 7, 1, 7, 4, 1, 7, ..., 3*a(n) + 1, ...].
%e 29*y(3,1) = [33; 43, 40, 37, 40, 43, 37, 40, 43, 37, ..., 3*a(n) + 37, ...].
%e CASE k = 3, n = 2.
%e y(3,2) = 2.12220007282539436078116266359839811814939013508321100093...
%e y(3,2) = [2; 8, 5, 2, 5, 8, 2, 5, 8, 2, 8, 5, 2, 8, ..., 3*a(n) + 2, ...].
%e 41*y(3,2) = [87; 98, 95, 92, 95, 98, 92, 95, 98, 92, ..., 3*a(n) + 92, ...].
%o (PARI) /* Generate over 5000 terms */
%o {CF=[1]; for(i=1, 8, M = contfracpnqn( CF + vector(#CF, i, if(i==1,8,10)) ); z = (1/7)*M[1, 1]/M[2, 1]; CF = contfrac(z) )}
%o for(n=0, 200, print1(CF[n+1] - 1, ", "))
%o (PARI) /* Using formula for terms */
%o {a(n) = if(n%3==0, 0,
%o if(n%3==2, 3 - a(n-1),
%o if(n%9==1, 2,
%o if(n%9==7, 1,
%o if(n%9==4, 3 - a((n-1)/3) )))))}
%o for(n=0, 200, print1(a(n), ", "))
%Y Cf. A321090.
%K nonn,cofr
%O 0,2
%A _Paul D. Hanna_, Nov 03 2018