login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominators of coefficients of odd powers of x of the expansion of Bessel function J_1(x).
14

%I #31 Sep 21 2024 19:38:13

%S 2,16,384,18432,1474560,176947200,29727129600,6658877030400,

%T 1917756584755200,690392370511872000,303772643025223680000,

%U 160391955517318103040000,100084580242806496296960000,72861574416763129304186880000,61203722510081028615516979200000

%N Denominators of coefficients of odd powers of x of the expansion of Bessel function J_1(x).

%C The corresponding numerators are A033999(n) = (-1)^n.

%D Bronstein-Semendjajew, Taschenbuch der Mathematik, 7th German ed. 1965, ch. 4.4.7

%H T. D. Noe, <a href="/A002474/b002474.txt">Table of n, a(n) for n = 0..50</a>

%H <a href="/index/Di#divseq">Index to divisibility sequences</a>

%H <a href="/index/Be#Bessel">Index entries for sequences related to Bessel functions or polynomials</a>

%F a(n) = 2^(2n+k) * n! * (n+k)! here for k=1, i.e., Bessel's J1(x) has the denominator a(n) for the coefficient of x^(2*n+1), n >= 0.

%F a(n) = 2^(2n+1)*A010790(n).

%e a(3) = 18432 = 128*6*24, since J_{1}(x) = x/2 - x^3/16 + x^5/384 - x^7/18432 + ...

%p a:= n-> denom(coeff(series(BesselJ(1, x), x, 2*n+2), x, 2*n+1)):

%p seq(a(n), n=0..15); # _Alois P. Heinz_, Sep 21 2024

%t CoefficientList[Series[BesselJ[1,x], {x,0,30}], x][[2 ;; ;; 2]]//Denominator

%t Table[2^(2*n+1)*n!*(n+1)!, {n,0,30}] (* _G. C. Greubel_, Sep 21 2024 *)

%o (PARI) a(n) = n!^2 * (n+1) << (2*n+1) \\ _Charles R Greathouse IV_, Oct 23 2023

%o (PARI) first(n)=my(x='x+O('x^(2*n+1)),t=besselj(1,x)); vector(n+1,k,2*denominator(polcoeff(t,2*k-2))) \\ _Charles R Greathouse IV_, Oct 23 2023

%o (Magma) [2^(2*n+1)*Factorial(n)*Factorial(n+1): n in [0..30]]; // _G. C. Greubel_, Sep 21 2024

%o (SageMath) [2^(2*n+1)*factorial(n)*factorial(n+1) for n in range(31)] # _G. C. Greubel_, Sep 21 2024

%Y Cf. J_0: A002454, J_2: A002506, J_3: A014401, J_4: A061403, J_5: A061404, J_6: A061405, J_7: A061407, J_9: A061440 J_10: A061441.

%Y Cf. A010790, A033999.

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_

%E Name specified, numerators given, formula augmented by _Wolfdieter Lang_, Aug 25 2015