login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002454 Central factorial numbers: a(n) = 4^n (n!)^2.
(Formerly M3693 N1510)
11
1, 4, 64, 2304, 147456, 14745600, 2123366400, 416179814400, 106542032486400, 34519618525593600, 13807847410237440000, 6682998146554920960000, 3849406932415634472960000, 2602199086312968903720960000, 2040124083669367620517232640000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Denominators in the series for Bessel's J0(x) = 1 - x^2/4 + x^4/64 - x^6/2304 + ...

a(n) is the unreduced numerator in Product_{k=1..n} (4*k^2)/(4*k^2-1), therefore a(n)/A079484(n) = Pi/2 as n -> oo. - Daniel Suteu, Dec 02 2016

From Zhi-Wei Sun, Jun 26 2022: (Start)

Conjecture: Let zeta be a primitive 2n+1-th root of unity. Then the permanent of the 2n X 2n matrix [m(j,k)]_{j,k=1..2n} is a(n)/(2n+1) = ((2n)!!)^2/(2n+1).

The determinant of of the matrix [m(j,k)]_{j,k=1..2n} was shown to be (-1)^(n-1)*((2n)!!)^2/(2n(2n+1)) by Han Wang and Zhi-Wei Sun in 2022. (End)

REFERENCES

Bronstein-Semendjajew, Taschenbuch der Mathematik, 7th german ed. 1965, ch. 4.4.7

A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 110.

E. L. Ince, Ordinary Differential Equations, Dover, NY, 1956; see p. 173.

J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..50

T. R. Van Oppolzer, Lehrbuch zur Bahnbestimmung der Kometen und Planeten, Vol. 2, Engelmann, Leipzig, 1880, p. 7.

Han Wang and Zhi-Wei Sun, Proof of a conjecture involving derangements and roots of unity, arXiv:2206.02589 [math.CO], 2022.

Index to divisibility sequences.

Index entries for sequences related to factorial numbers.

FORMULA

(-1)^n*a(n) is the coefficient of x^1 in Product_{k=0..2*n} (x+2*k-2*n). - Benoit Cloitre and Michael Somos, Nov 22 2002

E.g.f.: A(x) = arcsin(x)*sec(arcsin(x)). - Vladimir Kruchinin, Sep 12 2010

E.g.f.: arcsin(x)*sec(arcsin(x)) = arcsin(x)/sqrt(1-x^2) = x/G(0); G(k) = 2k*(x^2+1)+1-x^2*(2k+1)*(2k+2)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 20 2011

G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - (2*k+2)^2/(1-x/(x - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013

From Ilya Gutkovskiy, Dec 02 2016: (Start)

a(n) ~ Pi*2^(2*n+1)*n^(2*n+1)/exp(2*n).

Sum_{n>=0} 1/a(n) = BesselI(0,1) = A197036. (End)

From Daniel Suteu, Dec 02 2016: (Start)

a(n) ~ 2^(2*n) * gamma(n+1/2) * gamma(n+3/2).

a(n) ~ Pi*(2*n+1)*(4*n^2-1)^n/exp(2*n). (End)

2*a(n)/(2*n+1)! = A101926(n) / A001803(n). - Daniel Suteu, Feb 03 2017

Limit_{n->infinity} n*a(n)/((2n+1)!!)^2 = Pi/4. - Daniel Suteu, Nov 01 2017

Sum_{n>=0} (-1)^n/a(n) = BesselJ(0, 1) (A334380). - Amiram Eldar, Apr 09 2022

Limit_{n->infinity} a(n) / (n * A001818(n)) = Pi. - Daniel Suteu, Apr 09 2022

MATHEMATICA

Array[4^# (#!)^2 &, 14, 0] (* Michael De Vlieger, Nov 01 2017 *)

PROG

(PARI) a(n) = 4^n*(n!)^2; \\ Michel Marcus, Mar 13 2019

(Magma) [4^n*Factorial(n)^2: n in [0..15]]; // Vincenzo Librandi, Mar 15 2019

CROSSREFS

Cf. A000165, A001818, A079484, A197036, A334380.

J1: A002474, J2: A002506, J3: A014401.

Sequence in context: A081559 A298433 A261042 * A013043 A296741 A167406

Adjacent sequences:  A002451 A002452 A002453 * A002455 A002456 A002457

KEYWORD

nonn,easy,changed

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 30 11:39 EDT 2022. Contains 354939 sequences. (Running on oeis4.)