login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A337002 a(n) = n! * Sum_{k=0..n} k^4 / k!. 4
0, 1, 18, 135, 796, 4605, 28926, 204883, 1643160, 14795001, 147960010, 1627574751, 19530917748, 253901959285, 3554627468406, 53319412076715, 853110593292976, 14502880086064113, 261051841549259010, 4959984989436051511, 99199699788721190220 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Exponential convolution of fourth powers (A000583) and factorial numbers (A000142).

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..449

FORMULA

E.g.f.: x * (1 + 7*x + 6*x^2 + x^3) * exp(x) / (1 - x).

a(0) = 0; a(n) = n * (n^3 + a(n-1)).

MATHEMATICA

Table[n! Sum[k^4/k!, {k, 0, n}], {n, 0, 20}]

nmax = 20; CoefficientList[Series[x (1 + 7 x + 6 x^2 + x^3) Exp[x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!

a[0] = 0; a[n_] := a[n] = n (n^3 + a[n - 1]); Table[a[n], {n, 0, 20}]

PROG

(PARI) a(n) = n! * sum(k=0, n, k^4/k!); \\ Michel Marcus, Aug 12 2020

CROSSREFS

Cf. A000142, A000522, A000583, A007526, A030297, A256016, A337001.

Sequence in context: A010824 A022710 A056003 * A239208 A114239 A087115

Adjacent sequences:  A336999 A337000 A337001 * A337003 A337004 A337005

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Aug 10 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 12:37 EST 2020. Contains 338639 sequences. (Running on oeis4.)