login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n! * Sum_{k=0..n} k^4 / k!.
7

%I #12 Jan 13 2024 06:51:01

%S 0,1,18,135,796,4605,28926,204883,1643160,14795001,147960010,

%T 1627574751,19530917748,253901959285,3554627468406,53319412076715,

%U 853110593292976,14502880086064113,261051841549259010,4959984989436051511,99199699788721190220

%N a(n) = n! * Sum_{k=0..n} k^4 / k!.

%C Exponential convolution of fourth powers (A000583) and factorial numbers (A000142).

%H Seiichi Manyama, <a href="/A337002/b337002.txt">Table of n, a(n) for n = 0..449</a>

%F E.g.f.: x * (1 + 7*x + 6*x^2 + x^3) * exp(x) / (1 - x).

%F a(0) = 0; a(n) = n * (n^3 + a(n-1)).

%F a(n) ~ 15*exp(1)*n!. - _Vaclav Kotesovec_, Jan 13 2024

%t Table[n! Sum[k^4/k!, {k, 0, n}], {n, 0, 20}]

%t nmax = 20; CoefficientList[Series[x (1 + 7 x + 6 x^2 + x^3) Exp[x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!

%t a[0] = 0; a[n_] := a[n] = n (n^3 + a[n - 1]); Table[a[n], {n, 0, 20}]

%o (PARI) a(n) = n! * sum(k=0, n, k^4/k!); \\ _Michel Marcus_, Aug 12 2020

%Y Cf. A000142, A000522, A000583, A007526, A030297, A256016, A337001.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Aug 10 2020