Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Oct 21 2022 22:04:13
%S 0,0,0,2,19,90,302,820,1926,4068,7920,14454,25025,41470,66222,102440,
%T 154156,226440,325584,459306,636975,869858,1171390,1557468,2046770,
%U 2661100,3425760,4369950,5527197,6935814,8639390,10687312,13135320,16046096,19489888
%N Number of 3-element ordered antichains on an unlabeled n-element set; T_1-hypergraphs with 3 labeled nodes and n hyperedges.
%C T_1-hypergraph is a hypergraph (not necessarily without empty hyperedges or multiple hyperedges) which for every ordered pair of distinct nodes have a hyperedge containing one but not the other node.
%H G. C. Greubel, <a href="/A056005/b056005.txt">Table of n, a(n) for n = 0..1000</a>
%H K. S. Brown, <a href="http://www.mathpages.com/home/kmath515.htm">Dedekind's problem</a>
%H V. Jovovic and G. Kilibarda, <a href="http://dx.doi.org/10.4213/dm398">On the number of Boolean functions in the Post classes F^{mu}_8</a>, (in Russian), Diskretnaya Matematika, 11 (1999), no. 4, 127-138.
%H V. Jovovic and G. Kilibarda, <a href="http://dx.doi.org/10.1515/dma.1999.9.6.593">On the number of Boolean functions in the Post classes F^{mu}_8</a>, (English translation), Discrete Mathematics and Applications, 9, (1999), no. 6.
%H G. Kilibarda and V. Jovovic, <a href="https://arxiv.org/abs/1411.4187">Enumeration of some classes of T_0-hypergraphs</a>, arXiv:1411.4187 [math.CO], 2014.
%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (8,-28,56,-70,56,-28,8,-1).
%F a(n) = C(n+7, 7) - 6*C(n+5, 5) + 6*C(n+4, 4) + 3*C(n+3, 3) - 6*C(n+2, 2) + 2*C(n+1, 1).
%F a(n) = n*(n-2)*(n-1)*(n+1)*(n^3 + 30*n^2 + 131*n - 270)/5040.
%F G.f.: 1/(1-x)^8 - 6/(1-x)^6 + 6/(1-x)^5 + 3/(1-x)^4 - 6/(1-x)^3 + 2/(1-x)^2.
%F G.f.: x^3*(2 + 3*x - 6*x^2 + 2*x^3)/(1-x)^8.
%F Recurrence: a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).
%F Generally, recurrence for the number of m-element ordered antichains on an unlabeled n-element set is a(m, n) = C(2^m, 1)*a(m, n - 1) - C(2^m, 2)*a(m, n - 2) + C(2^m, 3)*a(m, n - 3) + ... + ( - 1)^(k - 1)*C(2^m, k)*a(m, n - k) + ... - a(m, n - 2^m).
%F a(n) = A000580(n+7) - 6*A000389(n+5) + 6*A000332(n+4) + 3*A000292(n+1) - 6*A000217(n+1) + 2*A000027(n+1). - _R. J. Mathar_, Nov 16 2007
%e There are 19 3-element ordered antichains on an unlabeled 4-element set: ({4},{3},{2}), ({4},{3},{1,2}), ({4},{2,3},{1}), ({4},{2,3},{1,3}), ({3,4},{2},{1}), ({3,4},{2},{1,4}), ({3,4},{2,4},{2,3}), ({3,4},{2,4},{1}), ({3,4},{2,4},{1,4}), ({3,4},{2,4},{1,3}), ({3,4},{2,4},{1,2}), ({3,4},{2,4},{1,2,3}), ({3,4},{1,2},{2,4}), ({3,4},{1,2,4},{2,3}), ({3,4},{1,2,4},{1,2,3}), ({2,3,4},{1,4},{1,3}), ({2,3,4},{1,4},{1,2,3}), ({2,3,4},{1,3,4},{1,2}), ({2,3,4},{1,3,4},{1,2,4}).
%t Table[Binomial[n+7,7]-6Binomial[n+5,5]+6Binomial[n+4,4]+3Binomial[n+3,3]- 6Binomial[n+2,2]+ 2Binomial[n+1,1],{n,0,40}] (* or *) LinearRecurrence[ {8,-28,56,-70,56,-28,8,-1},{0,0,0,2,19,90,302,820},40] (* _Harvey P. Dale_, Jul 27 2011 *)
%o (PARI) x='x+O('x^50); concat([0,0,0], Vec(x^3*(2+3*x-6*x^2+2*x^3)/(1-x)^8)) \\ _G. C. Greubel_, Oct 06 2017
%o (Magma) [n*(n-2)*(n-1)*(n+1)*(n^3 + 30*n^2 + 131*n - 270)/5040: n in [0..30]]; // _G. C. Greubel_, Nov 22 2017
%Y Cf. A047707 for 3-element (unordered) antichains on a labeled n-element set.
%Y Cf. A056069, A056070, A056071, A056073, A056163.
%K nonn,easy
%O 0,4
%A _Vladeta Jovovic_, Goran Kilibarda, Jul 24 2000
%E More terms from _Harvey P. Dale_, Jul 27 2011