The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A092936 Area of n-th triple of hexagons around a triangle. 11
 1, 9, 100, 1089, 11881, 129600, 1413721, 15421329, 168220900, 1835008569, 20016873361, 218350598400, 2381839709041, 25981886201049, 283418908502500, 3091626107326449, 33724468272088441, 367877524885646400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS This is the unsigned member r=-9 of the family of Chebyshev sequences S_r(n) defined in A092184: ((-1)^(n+1))*a(n) = S_{-9}(n), n>=0. a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using (1/2,1/2)-fences, red half-squares (1/2 X 1 pieces, always placed so that the shorter sides are horizontal), green half-squares, and blue half-squares. A (w,g)-fence is a tile composed of two w X 1 pieces separated by a gap of width g. a(n+1) also equals the number of tilings of an n-board using (1/4,3/4)-fences, red (1/4,1/4)-fences, green (1/4,1/4)-fences, and blue (1/4,1/4)-fences. - Michael A. Allen, Dec 30 2022 LINKS Muniru A Asiru, Table of n, a(n) for n = 1..200 Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17. Index entries for linear recurrences with constant coefficients, signature (10,10,-1). FORMULA a(n) = 10*(a(n-1)+a(n-2)) - a(n-3). G.f.: (1-x)*x/(1-10*x-10*x^2+x^3). a(n) = ((3-sqrt(13))^n-(3+sqrt(13))^n)^2/(13*4^n). a(n) = 2*(T(n, 11/2)-(-1)^n)/13 with twice the Chebyshev polynomials of the first kind evaluated at x=11/2: 2*T(n, 11/2)=A057076(n)=((11+3*sqrt(13))^n + (11-3*sqrt(13))^n)/2^n. - Wolfdieter Lang, Oct 18 2004 From Michael A. Allen, Dec 30 2022: (Start) a(n+1) = 11*a(n) - a(n-1) + 2*(-1)^n. a(n+1) = (1 + (-1)^n)/2 + 9*Sum_{k=1..n} ( k*a(n+1-k) ). (End) EXAMPLE a(5) = 10*(1089+100)-9 = 11881. From A006190, a(5) = (3*33+10)^2 = 11881. MAPLE seq(fibonacci(n, 3)^2, n=1..18); # Zerinvary Lajos, Apr 05 2008 MATHEMATICA CoefficientList[Series[(1-x)*x/(1-10*x-10*x^2+x^3), {x, 0, 20}], x] (CoefficientList[Series[x/(1-3*x-x^2), {x, 0, 20}], x])^2 Table[Round[((3+Sqrt[13])^n)^2/(13*4^n)], {n, 0, 20}] LinearRecurrence[{10, 10, -1}, {1, 9, 100}, 18] (* Georg Fischer, Feb 22 2019 *) PROG (GAP) a:=[1, 9, 100];; for n in [4..18] do a[n]:=10*(a[n-1]+a[n-2])-a[n-3]; od; a; # Muniru A Asiru, Feb 20 2018 CROSSREFS Equals (A006190)^2. Cf. A005386, A006190. Sequence in context: A027769 A266098 A065736 * A056002 A060150 A202833 Adjacent sequences: A092933 A092934 A092935 * A092937 A092938 A092939 KEYWORD easy,nonn AUTHOR Peter J. C. Moses, Apr 18 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 10:24 EDT 2024. Contains 372938 sequences. (Running on oeis4.)