login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056118
a(n) = (11*n+5)*(n+4)*(n+3)*(n+2)*(n+1)/120.
3
1, 16, 81, 266, 686, 1512, 2982, 5412, 9207, 14872, 23023, 34398, 49868, 70448, 97308, 131784, 175389, 229824, 296989, 378994, 478170, 597080, 738530, 905580, 1101555, 1330056, 1594971, 1900486, 2251096, 2651616, 3107192, 3623312
OFFSET
0,2
FORMULA
a(n) = (11*n+5)*binomial(n+4,4)/5.
G.f.: (1+10*x)/(1-x)^6.
a(0)=1, a(1)=16, a(2)=81, a(3)=266, a(4)=686, a(5)=1512; for n>5, a(n) = 6*a(n-1) -15*a(n-2) +20*a(n-3) -15*a(n-4) +6*a(n-5) -a(n-6). - Harvey P. Dale, Oct 18 2013
From G. C. Greubel, Jan 17 2020: (Start)
a(n) = 11*binomial(n+5,5) - 8*binomial(n+4,4).
E.g.f.: (360 +2760*x +3720*x^2 +1560*x^3 +235*x^4 +11*x^5)*exp(x)/120. (End)
MAPLE
seq( (11*n+5)*binomial(n+4, 4)/5, n=0..40); # G. C. Greubel, Jan 17 2020
MATHEMATICA
Table[((11n+5)Times@@(n+Range[4]))/120, {n, 0, 40}] (* or *) LinearRecurrence[ {6, -15, 20, -15, 6, -1}, {1, 16, 81, 266, 686, 1512}, 40] (* Harvey P. Dale, Oct 18 2013 *)
Table[11*Binomial[n+5, 5] -8*Binomial[n+4, 4], {n, 0, 40}] (* G. C. Greubel, Jan 17 2020 *)
PROG
(PARI) vector(41, n, (11*n-6)*binomial(n+3, 4)/5 ) \\ G. C. Greubel, Jan 17 2020
(Magma) [(11*n+5)*Binomial(n+4, 4)/5: n in [0..40]]; // G. C. Greubel, Jan 17 2020
(Sage) [(11*n+5)*binomial(n+4, 4)/5 for n in (0..40)] # G. C. Greubel, Jan 17 2020
(GAP) List([0..40], n-> (11*n+5)*Binomial(n+4, 4)/5 ); # G. C. Greubel, Jan 17 2020
CROSSREFS
Cf. A055268.
Sequence in context: A113316 A113317 A187457 * A372998 A351602 A134606
KEYWORD
nonn,easy
AUTHOR
Barry E. Williams, Jul 04 2000
STATUS
approved