Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Nov 23 2022 14:55:44
%S 1,17,117,525,1815,5247,13299,30459,64350,127270,238238,425646,730626,
%T 1211250,1947690,3048474,4657983,6965343,10214875,14718275,20868705,
%U 29156985,40190085,54712125,73628100,98030556,129229452,168785452
%N Expansion of (1+8*x)/(1-x)^9.
%D A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
%H G. C. Greubel, <a href="/A056117/b056117.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9,-36,84,-126,126,-84,36,-9,1).
%F a(n) = (9*n+8)*binomial(n+7, 7)/8.
%F G.f.: (1+8*x)/(1-x)^9.
%F From _G. C. Greubel_, Jan 18 2020: (Start)
%F a(n) = 9*binomial(n+8,8) - 8*binomial(n+7,7).
%F E.g.f.: (40320 + 645120*x + 1693440*x^2 + 1505280*x^3 + 588000*x^4 + 112896*x^5 + 10976*x^6 + 512*x^7 + 9*x^8)*exp(x)/40320. (End)
%p seq( (9*n+8)*binomial(n+7, 7)/8, n=0..30); # _G. C. Greubel_, Jan 18 2020
%t Table[9*Binomial[n+8,8] -8*Binomial[n+7,7], {n,0,30}] (* _G. C. Greubel_, Jan 18 2020 *)
%t LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,17,117,525,1815,5247,13299,30459,64350},30] (* _Harvey P. Dale_, Nov 23 2022 *)
%o (PARI) vector(31, n, (9*n-1)*binomial(n+6, 7)/8) \\ _G. C. Greubel_, Jan 18 2020
%o (Magma) [(9*n+8)*Binomial(n+7, 7)/8: n in [0..30]]; // _G. C. Greubel_, Jan 18 2020
%o (Sage) [(9*n+8)*binomial(n+7, 7)/8 for n in (0..30)] # _G. C. Greubel_, Jan 18 2020
%o (GAP) List([0..30], n-> (9*n+8)*Binomial(n+7, 7)/8 ); # _G. C. Greubel_, Jan 18 2020
%Y Cf. A093644 ((9, 1) Pascal, column m=8). Partial sums of A052206.
%K easy,nonn
%O 0,2
%A _Barry E. Williams_, Jul 04 2000