login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1+9*x)/(1-x)^11.
2

%I #33 Jan 15 2023 02:38:32

%S 1,20,165,880,3575,12012,35035,91520,218790,486200,1016158,2015520,

%T 3821090,6963880,12257850,20920064,34730575,56241900,89049675,

%U 138138000,210315105,314757300,463681725,673171200,964177500,1363732656,1906401420,2636011840,3607704980

%N Expansion of (1+9*x)/(1-x)^11.

%D Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

%H T. D. Noe, <a href="/A056114/b056114.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).

%F a(n) = (n+1)*binomial(n+9, 9).

%F G.f.: (1+9*x)/(1-x)^11.

%F a(n) = A245334(n+9,9)/A000142(9). - _Reinhard Zumkeller_, Aug 31 2014

%F From _G. C. Greubel_, Jan 18 2020: (Start)

%F a(n) = 10*binomial(n+10,10) - 9*binomial(n+9,9).

%F E.g.f.: (9! +6894720*x +22861440*x^2 +26853120*x^3 +14605920*x^4 + 4191264*x^5 +677376*x^6 +63072*x^7 +3321*x^8 +91*x^9 +x^10)*exp(x)/9!. (End)

%F From _Amiram Eldar_, Jan 15 2023: (Start)

%F Sum_{n>=0} 1/a(n) = 3*Pi^2/2 - 1077749/78400.

%F Sum_{n>=0} (-1)^n/a(n) = 3*Pi^2/4 - 24576*log(2)/35 + 37652469/78400. (End)

%p a:=n->(sum((numbcomp(n,10)), j=10..n)):seq(a(n), n=10..34); # _Zerinvary Lajos_, Aug 26 2008

%t CoefficientList[Series[(1+9x)/(1-x)^11,{x,0,40}],x] (* or *) LinearRecurrence[ {11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,20,165,880,3575,12012,35035, 91520,218790,486200,1016158},40] (* _Harvey P. Dale_, Jun 05 2018 *)

%o (Haskell)

%o a056114 n = (n + 1) * a007318' (n + 9) 9

%o -- _Reinhard Zumkeller_, Aug 31 2014

%o (PARI) vector(41, n, n*binomial(n+8, 9) ) \\ _G. C. Greubel_, Jan 18 2020

%o (Magma) [(n+1)*Binomial(n+9, 9): n in [0..40]]; // _G. C. Greubel_, Jan 18 2020

%o (Sage) [(n+1)*binomial(n+9, 9) for n in (0..40)] # _G. C. Greubel_, Jan 18 2020

%o (GAP) List([0..40], n-> (n+1)*Binomial(n+9, 9)); # _G. C. Greubel_, Jan 18 2020

%Y Cf. A000142, A007318, A056003, A245334.

%K nonn,easy

%O 0,2

%A _Barry E. Williams_, Jun 12 2000