Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jul 31 2015 11:49:03
%S 1,20,161,900,4225,18196,75185,304836,1225905,4913620,19669121,
%T 78697220,314817441,1259308180,5037283345,20149198916,80596879185,
%U 322387621716,1289550617185,5158202628740,20632810709441
%N a(n) = 4^n * sum_{i=1,n} i^4/4^i.
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (9, -30, 50, -45, 21, -4).
%F 1/81 * [380*4^n - 27n^4 - 144n^3 - 360n^2 - 528n - 380]. - _Ralf Stephan_, May 08 2004
%F a(1)=1, a(2)=20, a(3)=161, a(4)=900, a(5)=4225, a(6)=18196, a(n)= 9*a(n-1)- 30*a(n-2)+50*a(n-3)-45*a(n-4)+21*a(n-5)-4*a(n-6). - _Harvey P. Dale_, Jul 15 2012
%F From _Peter Bala_, Nov 29 2012, (Start)
%F Recurrence equation: a(n) = 4*a(n-1) + n^4. See A047520 and A066999.
%F O.g.f.: (x + 11*x^2 + 11*x^3 + x^4)/((1 - 4*x)*(1 - x)^5) = x + 20*x^2 + 161*x^3 + .... (end)
%t Table[4^n*Sum[i^4/4^i,{i,n}], {n,30}] (* or *) LinearRecurrence[ {9,-30,50,-45,21,-4}, {1,20,161,900,4225,18196}, 30] (* _Harvey P. Dale_, Jul 15 2012 *)
%Y Cf. A047520, A066999.
%K nonn,easy
%O 1,2
%A _Benoit Cloitre_, Jan 27 2002