login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368505
a(n) = Sum_{k=0..n} n^(n-k) * k^n.
5
1, 1, 6, 60, 900, 18945, 536046, 19750864, 923023368, 53456736825, 3758407535410, 315059660550756, 31005946105301388, 3535337355213234025, 461813139285801522870, 68448013078470849802560, 11415281142784979557384208, 2126537819755999634260404945
OFFSET
0,3
FORMULA
a(n) ~ sqrt(2*Pi) * n^(2*n + 1/2) / (exp(n) * (log(n))^(n+1)). - Vaclav Kotesovec, Dec 28 2023
PROG
(PARI) a(n) = sum(k=0, n, n^(n-k)*k^n);
CROSSREFS
Main diagonal of A368504.
Sequence in context: A138379 A064815 A331120 * A296956 A366335 A308332
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 27 2023
STATUS
approved