login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368506
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} k^(n-j) * binomial(j+k-1,j).
0
1, 1, 0, 1, 2, 0, 1, 4, 3, 0, 1, 6, 11, 4, 0, 1, 8, 24, 26, 5, 0, 1, 10, 42, 82, 57, 6, 0, 1, 12, 65, 188, 261, 120, 7, 0, 1, 14, 93, 360, 787, 804, 247, 8, 0, 1, 16, 126, 614, 1870, 3204, 2440, 502, 9, 0, 1, 18, 164, 966, 3810, 9476, 12900, 7356, 1013, 10, 0
OFFSET
0,5
FORMULA
G.f. of column k: 1/((1-k*x) * (1-x)^k).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 3, 11, 24, 42, 65, 93, ...
0, 4, 26, 82, 188, 360, 614, ...
0, 5, 57, 261, 787, 1870, 3810, ...
0, 6, 120, 804, 3204, 9476, 23112, ...
0, 7, 247, 2440, 12900, 47590, 139134, ...
PROG
(PARI) T(n, k) = sum(j=0, n, k^(n-j)*binomial(j+k-1, j));
CROSSREFS
Columns k=0..3 give A000007, A000027(n+1), A125128(n+1), A052150.
Main diagonal gives A293574.
Sequence in context: A124912 A138752 A357499 * A342133 A358050 A334781
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Dec 27 2023
STATUS
approved