login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052150
Partial sums of A000340, second partial sums of A003462.
6
1, 6, 24, 82, 261, 804, 2440, 7356, 22113, 66394, 199248, 597822, 1793557, 5380776, 16142448, 48427480, 145282593, 435847950, 1307544040, 3922632330, 11767897221, 35303691916, 105911076024, 317733228372, 953199685441
OFFSET
0,2
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.
P. Ribenhoim, The Little Book of Big Primes, Springer-Verlag, N.Y., 1991, p. 53.
FORMULA
a(n) = ((3^(n+3)) - (2*(n^2) + 12n + 19))/8.
a(n) = 3a(n-1)+C(n+2,2); a(0)=1.
a(n) = sum{k=0..n, binomial(n+3, k+3)2^k}. - Paul Barry, Aug 20 2004
From Colin Barker, Dec 18 2012: (Start)
a(n) = 6*a(n-1) - 12*a(n-2) + 10*a(n-3) - 3*a(n-4).
G.f.: 1/((x-1)^3*(3*x-1)). (End)
MATHEMATICA
LinearRecurrence[{6, -12, 10, -3}, {1, 6, 24, 82}, 40] (* Harvey P. Dale, Sep 05 2013 *)
CROSSREFS
Sequence in context: A320856 A047790 A133474 * A118043 A317408 A166060
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Jan 23 2000
STATUS
approved