login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052149 Nonsquare rectangles on an n X n board. 7
0, 4, 22, 70, 170, 350, 644, 1092, 1740, 2640, 3850, 5434, 7462, 10010, 13160, 17000, 21624, 27132, 33630, 41230, 50050, 60214, 71852, 85100, 100100, 117000, 135954, 157122, 180670, 206770, 235600, 267344, 302192, 340340, 381990, 427350, 476634 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Partial sums of A045991 n^3-n^2. - Jeremy Gardiner, Jun 30 2013

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Project Euler, Sum square difference: Problem 6

Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).

FORMULA

a(n) = n*(n-1)*(n+1)*(3*n+2)/12.

G.f.: 2*x^2*(2+x)/(1-5*x+10*x^2-10*x^3+5*x^4-x^5). - Colin Barker, Jan 04 2012

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Vincenzo Librandi, Apr 28 2012

a(n) = A033487(n-1) - A007290(n+1) starting at n=1. - J. M. Bergot, Jun 04 2012

a(n) = Sum_{k=1..n} (k-1)*k^2. - Michel Marcus, Nov 09 2012

a(n) = A000537(n) - A000330(n) = 2*A000914(n-1). - Luciano Ancora, Mar 16 2015

EXAMPLE

a(10) = 10 * 9 * 11 * 32 / 12 = 2640.

a(5) = 170 and the sum from 1 to 5 is 15, giving 1*(15-1)=14, 2*(15-2)=26, 2*(15-3)=36, 4*(15-4)=44 and 5*(15-5)=50; adding 14+26+36+44+50=170. Do the same for each n and get a(n). - J. M. Bergot, Oct 31 2014

MAPLE

a:=n->sum(j^3-j^2, j=0..n): seq(a(n), n=1..37); # Zerinvary Lajos, May 08 2008

MATHEMATICA

CoefficientList[Series[2*x*(2+x)/(1-5*x+10*x^2-10*x^3+ 5*x^4-x^5), {x, 0, 50}], x] (* Vincenzo Librandi, Apr 28 2012 *)

LinearRecurrence[{5, -10, 10, -5, 1}, {0, 4, 22, 70, 170}, 40] (* Harvey P. Dale, Jul 30 2019 *)

PROG

(MAGMA) I:=[0, 4, 22, 70, 170]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..45]]; // Vincenzo Librandi, Apr 28 2012

(PARI) a(n) = sum(k=1, n, (k-1)*k^2) \\ Michel Marcus, Nov 09 2012

CROSSREFS

Cf. A035291, A045991, A033487, A007290, A000537, A000330, A000914.

Sequence in context: A106846 A086863 A241689 * A062966 A201127 A259709

Adjacent sequences:  A052146 A052147 A052148 * A052150 A052151 A052152

KEYWORD

nonn,easy

AUTHOR

Ronald Arms (ron.arms(AT)stanfordalumni.org), Jan 23 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 27 00:14 EDT 2020. Contains 337378 sequences. (Running on oeis4.)