login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106846
a(n) = Sum_{k + l*m <= n} (k + l*m), with 0 <= k,l,m <= n.
4
0, 4, 22, 64, 144, 269, 461, 720, 1072, 1522, 2092, 2774, 3626, 4614, 5776, 7126, 8694, 10445, 12461, 14684, 17204, 19997, 23077, 26412, 30156, 34206, 38600, 43352, 48532, 54042, 60072, 66458, 73338, 80664, 88450, 96710, 105638, 114999
OFFSET
0,2
LINKS
FORMULA
From Ridouane Oudra, Jun 24 2024: (Start)
a(n) = (1/2) * (n*(n+1)*(2*n+1) + Sum_{k=1..n} (n^2 + n + k - k^2) * tau(k)).
a(n) = (1/2) * (A055112(n) + (n^2 + n) * A006218(n) + A143127(n) - A319085(n)).
a(n) = A059270(n) + A143127(n) + A106847(n). (End)
MAPLE
A106846 := proc(n)
local a, k, l, m ;
a := 0 ;
for k from 0 to n do
for l from 0 to n do
if l = 0 then
m := n ;
else
m := floor((n-k)/l) ;
end if;
if m >=0 then
m := min(m, n) ;
a := a+(m+1)*k+l*m*(m+1)/2 ;
end if;
end do:
end do:
a ;
end proc: # R. J. Mathar, Oct 17 2012
MATHEMATICA
A106846[n_] := Module[{a, k, l, m }, a = 0; For[k = 0, k <= n, k++, For[l = 0, l <= n, l++, If[l == 0, m = n, m = Floor[(n - k)/l]]; If[m >= 0, m = Min[m, n]; a = a + (m + 1)*k + l*m*(m + 1)/2 ]]]; a];
Table[A106846[n], {n, 0, 40}] (* Jean-François Alcover, Apr 04 2024, after R. J. Mathar *)
KEYWORD
nonn
AUTHOR
Ralf Stephan, May 06 2005
STATUS
approved