login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106634
Number of ways to express n as i*j+k*l, with i,j,k,l in the range [0..n].
5
1, 6, 21, 32, 62, 58, 124, 88, 173, 158, 226, 156, 380, 194, 340, 356, 466, 274, 613, 316, 690, 536, 596, 404, 1060, 552, 734, 728, 1032, 546, 1376, 596, 1213, 932, 1026, 976, 1858, 750, 1180, 1144, 1910, 854, 2048, 908, 1784, 1730, 1500, 1016, 2800
OFFSET
0,2
COMMENTS
Number of ordered 4-tuples [i,j,k,l] with n=i*j+k*l and i,j,k,l in the range [0..n].
a(n) is odd iff n is in A001105.
LINKS
R. J. Mathar and Charles R Greathouse IV, Table of n, a(n) for n = 0..10000 (terms through 780 from Mathar)
FORMULA
From Ridouane Oudra, Jul 20 2024: (Start)
a(n) = (4*n + 2)*tau(n) + Sum_{i=1..n-1} tau(i)*tau(n-i), for n>0 ;
a(n) = (4*n + 2)*A000005(n) + A055507(n-1), for n>0 ;
a(n) = 4*A038040(n) + A062011(n) + A055507(n-1), for n>0. (End)
EXAMPLE
a(1)=6: the 4-tuples ijkl are 1100, 1101, 1110, 0011, 0111, 1011.
a(2)=21: 1111, 2100, 210x, 21x0, 1200, 120x, 12x0, where x = 1 or 2, and ten more with the two halves swapped.
MAPLE
A106634 := proc(n)
local a, i, j, k, l ;
a := 0 ;
for i from 0 to n do
for j from 0 to n do
if i*j > n then
break;
end if;
for k from 0 to n do
if i*j = n then
# treat l=0 separately
a := a+1 ;
end if;
# l=1..n
if k =0 then
if i*j=n then
a := a+n ;
end if;
else
l := (n-i*j)/k ;
if l >=1 and l <=n and type(l, 'integer') then
a := a+1 ;
end if;
end if;
end do:
end do:
end do:
a ;
end proc: # R. J. Mathar, Oct 17 2012
MATHEMATICA
list[n_] := Module[{v, i, j}, v[_] = 0;
For[i = 2, i <= n, i++, For[j = 1, j <= Min[Quotient[n, i], i-1], j++, v[i*j]+= 2]];
For[i = 1, i <= Floor@Sqrt[n], i++, v[i^2]++];
Join[{1}, Table[2 Sum[v[j] v[i-j], {j, Quotient[i, 2]+1, i-1}]+If[OddQ[i], 0, v[i/2]^2]+(4i+2) v[i], {i, 1, n}]]];
list[48] (* Jean-François Alcover, Jun 04 2023, after Charles R Greathouse IV *)
PROG
(PARI) list(n)={
my(v=vector(n));
for(i=2, n, for(j=1, min(n\i, i-1), v[i*j]+=2));
for(i=1, sqrtint(n), v[i^2]++);
concat(1, vector(n, i, 2*sum(j=i\2+1, i-1, v[j]*v[i-j])+if(i%2, , v[i/2]^2)+(4*i+2)*v[i]))
}; \\ Charles R Greathouse IV, Oct 17 2012
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, May 06 2005
EXTENSIONS
Definition clarified by N. J. A. Sloane, Jul 07 2012
STATUS
approved