The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A035291 Number of ways to place a non-attacking white and black queen on n X n chessboard. 2
 0, 0, 16, 88, 280, 680, 1400, 2576, 4368, 6960, 10560, 15400, 21736, 29848, 40040, 52640, 68000, 86496, 108528, 134520, 164920, 200200, 240856, 287408, 340400, 400400, 468000, 543816, 628488, 722680, 827080, 942400, 1069376, 1208768 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1). FORMULA a(n) = (3 n^4 - 10 n^3 + 9 n^2 - 2 n)/3. Equals 4 * A052149(n-1). [N. J. A. Sloane, Feb 20 2005] G.f.: 8*x^3*(2+x)/(1-x)^5. [Colin Barker, Apr 17 2012] EXAMPLE There are 16 ways of putting distinct queens on 3 X 3 so that neither can capture the other. MATHEMATICA CoefficientList[Series[8*x^3*(2+x)/(1-x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 22 2012 *) PROG (Magma) [(3*n^4-10*n^3+9*n^2-2*n)/3: n in [1..40]]; // Vincenzo Librandi, Apr 22 2012 (Magma) I:=[0, 0, 16, 88, 280]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, Apr 22 2012 CROSSREFS Sequence in context: A070052 A203249 A022676 * A358084 A309271 A120045 Adjacent sequences: A035288 A035289 A035290 * A035292 A035293 A035294 KEYWORD nonn,easy AUTHOR Erich Friedman STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 06:00 EST 2023. Contains 367422 sequences. (Running on oeis4.)