login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A035289 Number of ways to place a non-attacking white and black knight on n X n chessboard. 1
0, 12, 56, 192, 504, 1100, 2112, 3696, 6032, 9324, 13800, 19712, 27336, 36972, 48944, 63600, 81312, 102476, 127512, 156864, 191000, 230412, 275616, 327152, 385584, 451500, 525512, 608256, 700392, 802604, 915600, 1040112, 1176896 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).

FORMULA

a(n) = n^4 - 9 n^2 + 24 n - 16.

G.f.: 4*x^2*(4*x^3-8*x^2+x-3)/(x-1)^5. [Colin Barker, Jan 09 2013]

EXAMPLE

There are 56 ways of putting 2 distinct knights on 3 X 3 so that neither can capture the other

MATHEMATICA

CoefficientList[Series[4 x (4 x^3 - 8 x^2 + x - 3)/(x - 1)^5, {x, 0, 50}], x] (* Vincenzo Librandi, Oct 20 2013 *)

PROG

(MAGMA) [n^4 - 9*n^2 + 24*n - 16: n in [1..50]]; // Vincenzo Librandi, Oct 20 2013

CROSSREFS

Sequence in context: A212507 A212508 A009430 * A275505 A009827 A068418

Adjacent sequences:  A035286 A035287 A035288 * A035290 A035291 A035292

KEYWORD

nonn,easy

AUTHOR

Erich Friedman

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 22 14:30 EDT 2019. Contains 322356 sequences. (Running on oeis4.)