login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035289
Number of ways to place a non-attacking white and black knight on n X n chessboard.
1
0, 12, 56, 192, 504, 1100, 2112, 3696, 6032, 9324, 13800, 19712, 27336, 36972, 48944, 63600, 81312, 102476, 127512, 156864, 191000, 230412, 275616, 327152, 385584, 451500, 525512, 608256, 700392, 802604, 915600, 1040112, 1176896
OFFSET
1,2
FORMULA
a(n) = n^4 - 9 n^2 + 24 n - 16.
G.f.: 4*x^2*(4*x^3-8*x^2+x-3)/(x-1)^5. [Colin Barker, Jan 09 2013]
EXAMPLE
There are 56 ways of putting 2 distinct knights on 3 X 3 so that neither can capture the other
MATHEMATICA
CoefficientList[Series[4 x (4 x^3 - 8 x^2 + x - 3)/(x - 1)^5, {x, 0, 50}], x] (* Vincenzo Librandi, Oct 20 2013 *)
PROG
(Magma) [n^4 - 9*n^2 + 24*n - 16: n in [1..50]]; // Vincenzo Librandi, Oct 20 2013
CROSSREFS
Sequence in context: A331771 A009430 A348584 * A275505 A009827 A068418
KEYWORD
nonn,easy
STATUS
approved