OFFSET
1,1
COMMENTS
If 2^p - 1 is prime (a Mersenne prime) then k = 2^p*(2^p - 1) is in the sequence because 3*k - 2*phi(k) = sigma(k) (see Comments at A068414) so sigma(k) - k = 2*(k - phi(k)) hence k - phi(k) divides sigma(k) - k. - Farideh Firoozbakht, Dec 31 2005
Also if 3*2^m - 1 is a prime greater than 5 then k = 15*2^(m+1)*(3*2^m - 1) is in the sequence because 4*k - 3*phi(k) = 4*15*2^(m+1)*(3*2^m - 1) - 3*2^(m+3)*(3*2^m - 2) = 24*(3*2^m)*(2^(m+2) - 1) = sigma(15)*sigma(3*2^m - 1)*sigma(2^(m+1)) = sigma(15*(3*2^m - 1)*2^(m+1)) = sigma(k) hence sigma(k) - k = 3*(k - phi(k)) and k - phi(k) divides sigma(k) - k. - Farideh Firoozbakht, Dec 31 2005
LINKS
Donovan Johnson, Table of n, a(n) for n = 1..68 (terms < 10^11)
MATHEMATICA
Do[s=(DivisorSigma[1, n]-n)/(n-EulerPhi[n]); If[ !PrimeQ[n]&&IntegerQ[s], Print[n]], {n, 2, 10000000}]
PROG
(PARI) for(n=1, 300000, if((sigma(n)-n)%(n-eulerphi(n))==isprime(n), print1(n, ", ")))
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Mar 03 2002
EXTENSIONS
More terms from Labos Elemer, Apr 02 2002
STATUS
approved