login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to place a non-attacking white and black knight on n X n chessboard.
1

%I #16 Sep 08 2022 08:44:52

%S 0,12,56,192,504,1100,2112,3696,6032,9324,13800,19712,27336,36972,

%T 48944,63600,81312,102476,127512,156864,191000,230412,275616,327152,

%U 385584,451500,525512,608256,700392,802604,915600,1040112,1176896

%N Number of ways to place a non-attacking white and black knight on n X n chessboard.

%H Vincenzo Librandi, <a href="/A035289/b035289.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).

%F a(n) = n^4 - 9 n^2 + 24 n - 16.

%F G.f.: 4*x^2*(4*x^3-8*x^2+x-3)/(x-1)^5. [_Colin Barker_, Jan 09 2013]

%e There are 56 ways of putting 2 distinct knights on 3 X 3 so that neither can capture the other

%t CoefficientList[Series[4 x (4 x^3 - 8 x^2 + x - 3)/(x - 1)^5, {x, 0, 50}], x] (* _Vincenzo Librandi_, Oct 20 2013 *)

%o (Magma) [n^4 - 9*n^2 + 24*n - 16: n in [1..50]]; // _Vincenzo Librandi_, Oct 20 2013

%K nonn,easy

%O 1,2

%A _Erich Friedman_