login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133474
Inverse binomial transform of (A113405 preceded by 0).
3
0, 0, 0, 1, 6, 24, 81, 252, 756, 2241, 6642, 19764, 59049, 176904, 530712, 1592865, 4780782, 14346720, 43046721, 129146724, 387440172, 1162300833, 3486843450, 10460412252, 31381059609, 94143001680, 282429005040, 847287546561
OFFSET
0,5
FORMULA
b(n) = a(n) with one 0; c(n)=1, 3, 6, 9, 9, 0, -27, ... = A057083; b(n+1) = 3*b(n) + c(n)?
From R. J. Mathar, Apr 02 2008: (Start)
O.g.f.: x^3/((1-3*x)*(1-3*x+3*x^2)).
a(n) = 6*a(n-1) - 12*a(n-2) + 9*a(n-3). (End)
MAPLE
seq(coeff(series(x^3/((1-3*x)(1-3*x+3*x^2)), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Nov 21 2019
MATHEMATICA
LinearRecurrence[{6, -12, 9}, {0, 0, 0, 1}, 30] (* G. C. Greubel, Nov 21 2019 *)
PROG
(PARI) my(x='x+O('x^30)); concat([0, 0, 0], Vec(x^3/((1-3*x)*(1-3*x+3*x^2)))) \\ G. C. Greubel, Nov 21 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); [0, 0, 0] cat Coefficients(R!( x^3/((1-3*x)*(1-3*x+3*x^2)) )); // G. C. Greubel, Nov 21 2019
(Sage)
def A133474_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(x^3/((1-3*x)*(1-3*x+3*x^2))).list()
A133474_list(30) # G. C. Greubel, Nov 21 2019
(GAP) a:=[0, 0, 1];; for n in [4..30] do a[n]:=6*a[n-1]-12*a[n-2]+9*a[n-3]; od; a; # G. C. Greubel, Nov 21 2019
CROSSREFS
Sequence in context: A344273 A320856 A047790 * A052150 A118043 A317408
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Nov 29 2007
STATUS
approved