login
A133474
Inverse binomial transform of (A113405 preceded by 0).
3
0, 0, 0, 1, 6, 24, 81, 252, 756, 2241, 6642, 19764, 59049, 176904, 530712, 1592865, 4780782, 14346720, 43046721, 129146724, 387440172, 1162300833, 3486843450, 10460412252, 31381059609, 94143001680, 282429005040, 847287546561
OFFSET
0,5
FORMULA
b(n) = a(n) with one 0; c(n)=1, 3, 6, 9, 9, 0, -27, ... = A057083; b(n+1) = 3*b(n) + c(n)?
From R. J. Mathar, Apr 02 2008: (Start)
O.g.f.: x^3/((1-3*x)*(1-3*x+3*x^2)).
a(n) = 6*a(n-1) - 12*a(n-2) + 9*a(n-3). (End)
MAPLE
seq(coeff(series(x^3/((1-3*x)(1-3*x+3*x^2)), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Nov 21 2019
MATHEMATICA
LinearRecurrence[{6, -12, 9}, {0, 0, 0, 1}, 30] (* G. C. Greubel, Nov 21 2019 *)
PROG
(PARI) my(x='x+O('x^30)); concat([0, 0, 0], Vec(x^3/((1-3*x)*(1-3*x+3*x^2)))) \\ G. C. Greubel, Nov 21 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); [0, 0, 0] cat Coefficients(R!( x^3/((1-3*x)*(1-3*x+3*x^2)) )); // G. C. Greubel, Nov 21 2019
(Sage)
def A133474_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(x^3/((1-3*x)*(1-3*x+3*x^2))).list()
A133474_list(30) # G. C. Greubel, Nov 21 2019
(GAP) a:=[0, 0, 1];; for n in [4..30] do a[n]:=6*a[n-1]-12*a[n-2]+9*a[n-3]; od; a; # G. C. Greubel, Nov 21 2019
CROSSREFS
Sequence in context: A344273 A320856 A047790 * A052150 A118043 A317408
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Nov 29 2007
STATUS
approved