login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047790 a(n) = Fibonacci(2*n)-2^n+1. 3
0, 0, 0, 1, 6, 24, 81, 250, 732, 2073, 5742, 15664, 42273, 113202, 301428, 799273, 2112774, 5571816, 14668209, 38563882, 101285580, 265817145, 697214430, 1827923296, 4790749761, 12552714594, 32884171236, 86133353545, 225582998262, 590749858968, 1546935014097 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

REFERENCES

T. Mansour, A. O. Munagi, Block-connected set partitions, Eur. J. Combinat. 31 (3) (2010) 887-902, Table 3 column 3. doi:10.1016/j.ejc.2009.07.001

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (6,-12,9,-2).

FORMULA

a(0)=0, a(1)=0, a(2)=0, a(3)=1, a(n)=6*a(n-1)-12*a(n-2)+ 9*a(n-3)- 2*a(n-4). - Harvey P. Dale, Jan 19 2012

G.f.: x^3/(1 - 6*x + 12*x^2 - 9*x^3 + 2*x^4). - Benedict W. J. Irwin, Nov 02 2016

a(n) = (1-2^n-((3-sqrt(5))/2)^n/sqrt(5)+((3+sqrt(5))/2)^n/sqrt(5)). - Colin Barker, Nov 02 2016

MAPLE

with(combstruct): SeqSeqSeqL := [T, {T=Sequence(S, card > 1), S=Sequence(U, card > 1), U=Sequence(Z, card >0)}, unlabeled]: seq(count(SeqSeqSeqL, size=j+1), j=0..29); # Zerinvary Lajos, Apr 16 2009

MATHEMATICA

Table[Fibonacci[2n]-2^n+1, {n, 0, 30}] (* or *) LinearRecurrence[ {6, -12, 9, -2}, {0, 0, 0, 1}, 30] (* Harvey P. Dale, Jan 19 2012 *)

CoefficientList[Series[x^3/(1 - 6 x + 12 x^2 - 9 x^3 + 2 x^4), {x, 0, 30}], x] (* Benedict W. J. Irwin, Nov 02 2016 *)

PROG

(Sage) [lucas_number1(n, 3, 1)-lucas_number1(n, 3, 2) for n in range(0, 30)] # Zerinvary Lajos, Jul 06 2008

(PARI) concat(vector(3), Vec(x^3/(1-6*x+12*x^2-9*x^3+2*x^4) + O(x^40))) \\ Colin Barker, Nov 02 2016

CROSSREFS

Sequence in context: A001788 A068711 A320856 * A133474 A052150 A118043

Adjacent sequences:  A047787 A047788 A047789 * A047791 A047792 A047793

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 27 19:10 EST 2020. Contains 332308 sequences. (Running on oeis4.)