login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047787 Decimal expansion of (-1)*Gamma'(1/3)/Gamma(1/3) where Gamma(x) denotes the Gamma function. 12
3, 1, 3, 2, 0, 3, 3, 7, 8, 0, 0, 2, 0, 8, 0, 6, 3, 2, 2, 9, 9, 6, 4, 1, 9, 0, 7, 4, 2, 8, 7, 2, 6, 8, 8, 5, 4, 1, 5, 5, 4, 2, 8, 2, 9, 6, 7, 2, 0, 4, 1, 8, 0, 6, 4, 1, 9, 2, 7, 5, 1, 2, 0, 3, 0, 3, 5, 1, 7, 0, 7, 5, 7, 1, 6, 8, 7, 5, 5, 0, 6, 3, 0, 8, 9, 4, 3, 3, 1, 8, 9, 6, 1, 8, 3, 7, 4, 9, 6, 7, 1, 2, 4, 6, 9 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Decimal expansion of -psi(1/3). - Benoit Cloitre, Mar 07 2004

REFERENCES

S. J. Patterson, "An introduction to the theory of the Riemann zeta function", Cambridge studies in advanced mathematics no. 14, p. 135

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

FORMULA

Gamma'(1/3)/Gamma(1/3)=-EulerGamma-(3/2)*log(3)-Pi/(2*sqrt(3))=-3.13203378002... where EulerGamma is the Euler-Mascheroni constant (A001620).

MATHEMATICA

RealDigits[PolyGamma[1/3], 10, 105] // First (* Jean-Fran├žois Alcover, Aug 08 2015 *)

PROG

(PARI) Euler+(3/2)*log(3)+Pi/(2*sqrt(3))

(MAGMA) SetDefaultRealField(RealField(100)); R:= RealField();

EulerGamma(R) + (3/2)*Log(3) + Pi(R)/(2*Sqrt(3)); // G. C. Greubel, Aug 28 2018

CROSSREFS

Sequence in context: A099906 A262026 A270390 * A102668 A243848 A271617

Adjacent sequences:  A047784 A047785 A047786 * A047788 A047789 A047790

KEYWORD

cons,nonn

AUTHOR

Benoit Cloitre, May 24 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 10:25 EST 2020. Contains 331144 sequences. (Running on oeis4.)