

A047787


Decimal expansion of (1)*Gamma'(1/3)/Gamma(1/3) where Gamma(x) denotes the Gamma function.


10



3, 1, 3, 2, 0, 3, 3, 7, 8, 0, 0, 2, 0, 8, 0, 6, 3, 2, 2, 9, 9, 6, 4, 1, 9, 0, 7, 4, 2, 8, 7, 2, 6, 8, 8, 5, 4, 1, 5, 5, 4, 2, 8, 2, 9, 6, 7, 2, 0, 4, 1, 8, 0, 6, 4, 1, 9, 2, 7, 5, 1, 2, 0, 3, 0, 3, 5, 1, 7, 0, 7, 5, 7, 1, 6, 8, 7, 5, 5, 0, 6, 3, 0, 8, 9, 4, 3, 3, 1, 8, 9, 6, 1, 8, 3, 7, 4, 9, 6, 7, 1, 2, 4, 6, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Decimal expansion of psi(1/3).  Benoit Cloitre, Mar 07 2004


REFERENCES

S. J. Patterson, "An introduction to the theory of the Riemann zeta function", Cambridge studies in advanced mathematics no. 14, p. 135


LINKS

Table of n, a(n) for n=1..105.


FORMULA

Gamma'(1/3)/Gamma(1/3)=EulerGamma(3/2)*log(3)Pi/(2*sqrt(3))=3.13203378002... where EulerGamma is the EulerMascheroni constant (A001620).


MATHEMATICA

RealDigits[PolyGamma[1/3], 10, 105] // First (* JeanFrançois Alcover, Aug 08 2015 *)


PROG

(PARI) Euler+(3/2)*log(3)+Pi/(2*sqrt(3))


CROSSREFS

Sequence in context: A099906 A262026 A270390 * A102668 A243848 A271617
Adjacent sequences: A047784 A047785 A047786 * A047788 A047789 A047790


KEYWORD

cons,nonn


AUTHOR

Benoit Cloitre, May 24 2003


STATUS

approved



