|
|
A047788
|
|
Numerators of Glaisher's I-numbers.
|
|
6
|
|
|
1, 1, 1, 7, 809, 1847, 55601, 6921461, 126235201, 8806171927, 2288629046003, 80348736972167, 10111159088668001, 40453941942593304589, 258227002122139705201, 51215766794507248883047, 34747165199239302488636803, 2962605017328303351107945687
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
Conjecture: L(2n+1, chi3) = a(n)/A047789(n) * (2*Pi)^(2n+1)/((2n)!*3^(2n+3/2)), where L(s, chi3) = Sum_{k>=1} Legendre(k,3)/k^s = Sum_{k>=1} A102283(k)/k^s is the Dirichlet L-function for the non-principal character modulo 3. - Jianing Song, Nov 17 2019
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 0..255
J. W. L. Glaisher, On a set of coefficients analogous to the Eulerian numbers, Proc. London Math. Soc., 31 (1899), 216-235.
Index entries for sequences related to Glaisher's numbers
|
|
FORMULA
|
E.g.f. for (-1)^n*I(n) is (3/2)/(1 + 2*cosh(x)).
|
|
EXAMPLE
|
1/2, 1/3, 1, 7, 809/9, 1847, 55601, 6921461/3, ...
|
|
MAPLE
|
S:= series(3/(2+4*cos(x)), x, 101):
seq(numer(coeff(S, x, 2*j)*(2*j)!), j=0..50); # Robert Israel, Aug 14 2018
|
|
MATHEMATICA
|
terms = 20; CoefficientList[(3/2)/(1+Exp[x]+Exp[-x]) + O[x]^(2terms), x]* Range[0, 2terms-2]! // Abs // Numerator // DeleteCases[#, 0]& (* Jean-François Alcover, Feb 28 2019 *)
|
|
PROG
|
(PARI) a(n)=if(n<1, (n==0), n*=2; numerator(n!* polcoeff(3/(2+4*cos(x+O(x^n) )), n))) /* Michael Somos, Feb 26 2004 */
(Magma) m:=60; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( 3/(2*(1+2*Cosh(x))) )); [Numerator((-1)^(n+1)*Factorial(2*n-2)* b[2*n-1]): n in [1..Floor((m-2)/2)]]; // G. C. Greubel, May 17 2019
(Sage) [numerator( (-1)^n*factorial(2*n)*( 3/(2*(1+2*cosh(x))) ).series(x, 2*n+2).list()[2*n]) for n in (0..30)] # G. C. Greubel, May 17 2019
|
|
CROSSREFS
|
Cf. A047789, A002111.
Cf. A102283.
Sequence in context: A342834 A278438 A279120 * A251698 A203694 A269896
Adjacent sequences: A047785 A047786 A047787 * A047789 A047790 A047791
|
|
KEYWORD
|
nonn,frac
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|