login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278438
Numbers m such that T(m) + 2*T(m+1) is a square, where T = A000217.
2
7, 799, 78407, 7683199, 752875207, 73774087199, 7229107670407, 708378777612799, 69413891098384007, 6801852948864019999, 666512175097575576007, 65311391306613542428799, 6399849835873029582446407, 627119972524250285537319199, 61451357457540654953074835207
OFFSET
1,1
COMMENTS
It is well known that T(m) + k*T(m+1) is always a square for k=1. For k=3, the nonnegative values of m are the terms of A278310.
Square roots of T(m) + 2*T(m+1) are listed by A168520 (after 0).
Negative values of m for which T(m) + 2*T(m+1) is a square: -1, -2, -82, -7922, -776162, ...
FORMULA
O.g.f.: x*(7 + 106*x - x^2)/((1 - x)*(1 - 98*x + x^2)).
E.g.f.: (exp((5-2*sqrt(6))^2*x) + exp((5+2*sqrt(6))^2*x) - 14*exp(x))/12 + 1.
a(n) = 99*a(n-1) - 99*a(n-2) + a(n-3) for n>3.
a(n) = 98*a(n-1) - a(n-2) + 112 for n>2.
a(n) = a(-n) = ((5 + 2*sqrt(6))^(2*n) + (5 - 2*sqrt(6))^(2*n))/12 - 7/6.
a(n) = A001079(2*n)/6 - 7/6.
a(n) = 2*A001078(n)^2 - 1 = A122652(n)^2/2 - 1.
a(n) = -A278620(n+1) + 106*A278620(n) + 7*A278620(n-1).
Lim_{n -> infinity} a(n)/a(n-1) = (5 + 2*sqrt(6))^2.
MAPLE
P:=proc(q) local n; for n from 1 to q do if type(sqrt((3*n^2+7*n+4)/2), integer) then print(n); fi; od; end: P(10^9); # Paolo P. Lava, Nov 25 2016
MATHEMATICA
Table[((5 + 2 Sqrt[6])^(2 n) + (5 - 2 Sqrt[6])^(2 n))/12 - 7/6, {n, 1, 20}]
RecurrenceTable[{a[1] == 7, a[2] == 799, a[n] == 98 a[n - 1] - a[n - 2] + 112}, a, {n, 1, 20}]
LinearRecurrence[{99, -99, 1}, {7, 799, 78407}, 20] (* Harvey P. Dale, Oct 18 2024 *)
PROG
(Sage)
def A278438():
a, b = 7, 799
yield a
while True:
yield b
a, b = b, 98*b - a + 112
a = A278438(); print([next(a) for _ in range(15)]) # Peter Luschny, Nov 24 2016
(Magma) Iv:=[7, 799]; [n le 2 select Iv[n] else 98*Self(n-1)-Self(n-2)+112: n in [1..20]];
(PARI) Vec(x*(7 + 106*x - x^2)/((1 - x)*(1 - 98*x + x^2)) + O(x^20)) \\ Colin Barker, Nov 27 2016
CROSSREFS
Subsequence of A056220.
Cf. A278310: numbers m such that T(m) + 3*T(m+1) is a square.
Sequence in context: A342836 A338968 A342834 * A279120 A047788 A251698
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Nov 23 2016
STATUS
approved