|
|
A342834
|
|
a(n) is the number whose decimal expansion consists of the concatenation of the largest 1-digit prime = 7, the largest 2-digit prime = 97, ... up to the largest n-digit prime = A003618(n).
|
|
4
|
|
|
7, 797, 797997, 7979979973, 797997997399991, 797997997399991999983, 7979979973999919999839999991, 797997997399991999983999999199999989, 797997997399991999983999999199999989999999937, 7979979973999919999839999991999999899999999379999999967
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
a(n) has n*(n+1)/2 digits.
a(1) = 7 and a(2) = 797, these are only 2 known indices for which a(n) = A338968(n).
The decimal expansion of the limit when n -> oo of a(n) is A340220.
|
|
LINKS
|
Table of n, a(n) for n=1..10.
|
|
EXAMPLE
|
The greatest primes with 1, 2 and 3 digits are respectively 7, 97 and 997, hence, a(3) = 7||97||997 = 797997 where || stands for concatenation.
|
|
PROG
|
(Python)
from sympy import prevprime
def aupton(nn):
astr, alst = "", []
for n in range(1, nn+1):
astr += str(prevprime(10**n)); alst.append(int(astr))
return alst
print(aupton(10)) # Michael S. Branicky, Mar 23 2021
(PARI) a(n) = my(s=""); for (k=1, n, s = Str(s, precprime(10^k))); eval(s); \\ Michel Marcus, Mar 24 2021
|
|
CROSSREFS
|
Cf. A000217 (number of digits), A338968, A340220, A342835 (number of divisors), A342836 (smallest prime factor).
Sequence in context: A001467 A342836 A338968 * A278438 A279120 A047788
Adjacent sequences: A342831 A342832 A342833 * A342835 A342836 A342837
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Bernard Schott, Mar 23 2021
|
|
STATUS
|
approved
|
|
|
|