login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342832
Sums of two distinct odd fourth powers.
1
82, 626, 706, 2402, 2482, 3026, 6562, 6642, 7186, 8962, 14642, 14722, 15266, 17042, 21202, 28562, 28642, 29186, 30962, 35122, 43202, 50626, 50706, 51250, 53026, 57186, 65266, 79186, 83522, 83602, 84146, 85922, 90082, 98162, 112082, 130322, 130402, 130946, 132722
OFFSET
1,1
EXAMPLE
82 is in the sequence since 82 = 1^4 + 3^4.
626 is in the sequence since 626 = 1^4 + 5^4.
MATHEMATICA
Quiet@Select[Range@60000, !Equal@@(a=First@PowersRepresentations[#, 2, 4])&&And@@OddQ@a&] (* Giorgos Kalogeropoulos, Apr 24 2021 *)
Union[Total/@Subsets[Range[1, 19, 2]^4, {2}]] (* Harvey P. Dale, Jan 24 2022 *)
PROG
(Python)
def aupto(limit):
ofps = [i**4 for i in range(1, int(limit**.25)+2, 2) if i**4 < limit]
ss = set(f+g for i, f in enumerate(ofps) for g in ofps[i+1:])
return sorted(s for s in ss if s <= limit)
print(aupto(132722)) # Michael S. Branicky, Apr 24 2021
CROSSREFS
Cf. A339992 (sums of two distinct odd cubes), A343588.
Sequence in context: A317212 A282773 A182277 * A186688 A002309 A128959
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Apr 20 2021
EXTENSIONS
More terms from Jon E. Schoenfield, Apr 20 2021
STATUS
approved