The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A128959 a(n) is equal to the number of positive integers m less than or equal to 10^n such that m is not divisible by at least one of the primes 2,3 and is not divisible by at least one of the primes 5,7. 1
 82, 810, 8096, 80953, 809524, 8095239, 80952382, 809523810, 8095238096, 80952380953, 809523809524, 8095238095239, 80952380952382, 809523809523810, 8095238095238096, 80952380952380953, 809523809523809524, 8095238095238095239, 80952380952380952382 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 LINKS Vincenzo Librandi, Table of n, a(n) for n = 2..1000 Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets Index entries for linear recurrences with constant coefficients, signature (11,-11,11,-11,11,-10). FORMULA a(n) = 10^n-floor(10^n/6)-floor(10^n/35)+floor(10^n/210). From Colin Barker, Nov 17 2015: (Start) a(n) = 11*a(n-1)-11*a(n-2)+11*a(n-3)-11*a(n-4)+11*a(n-5)-10*a(n-6) for n>7. G.f.: -x^2*(90*x^5-89*x^4+95*x^3-88*x^2+92*x-82) / ((x-1)*(10*x-1)*(x^2-x+1)*(x^2+x+1)). (End) MAPLE f := n->10^n-floor(10^n/2)-floor(10^n/35)+floor(10^n/210); PROG (MAGMA) [10^n-Floor(10^n/6)-Floor(10^n/35)+Floor(10^n/210): n in [2..20]]; // Vincenzo Librandi, Oct 02 2011 (PARI) Vec(-x^2*(90*x^5-89*x^4+95*x^3-88*x^2+92*x-82)/((x-1)*(10*x-1)*(x^2-x+1)*(x^2+x+1)) + O(x^30)) \\ Colin Barker, Nov 17 2015 CROSSREFS Cf. A092695. Sequence in context: A342832 A186688 A002309 * A305682 A317062 A230394 Adjacent sequences:  A128956 A128957 A128958 * A128960 A128961 A128962 KEYWORD nonn,easy AUTHOR Milan Janjic, Apr 28 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 00:45 EST 2022. Contains 350467 sequences. (Running on oeis4.)