The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A282773 Numbers n such that Bernoulli number B_{n} has denominator 498. 15
82, 574, 1066, 1394, 3034, 3362, 3854, 4838, 5494, 5822, 6478, 7462, 7954, 8282, 8774, 8938, 10414, 11234, 12218, 12382, 12874, 13694, 15826, 16154, 17302, 18614, 18778, 21074, 21238, 21566, 22058, 22222, 22714, 23206, 23534, 23698, 25174, 25502, 25994 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
498 = 2 * 3 * 83.
All terms are multiples of a(1) = 82.
For these numbers numerator(B_{n}) mod denominator(B_{n}) = 77.
n such that 82 | n but there are no primes p other than 2, 3, 83 such that p-1 | n. - Robert Israel, Mar 07 2017
LINKS
EXAMPLE
Bernoulli B_{82} is 1677014149185145836823154509786269900207736027570253414881613/498, hence 82 is in the sequence.
MAPLE
with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do
if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 498);
# Alternative:
filter:= n ->
select(isprime, map(`+`, numtheory:-divisors(n), 1)) = {2, 3, 83}:
select(filter, [seq(i, i=82..10^5, 82)]); # Robert Israel, Mar 07 2017
MATHEMATICA
Select[82 Range[360], Denominator@ BernoulliB@ # == 498 &] (* Michael De Vlieger, Mar 07 2017 *)
CROSSREFS
Cf. A002445.
Sequence in context: A316241 A305951 A317212 * A182277 A342832 A186688
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Mar 07 2017
EXTENSIONS
More terms from Michael De Vlieger, Mar 07 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 08:45 EDT 2024. Contains 373424 sequences. (Running on oeis4.)