OFFSET
1,2
COMMENTS
Subset of A002181 (inverse of the Euler totient function).
Most terms are primes except for n = 12, 21, 32, 33, 34, 40, ... because a(12) = 85 = 5*17, a(21) = 185 = 5*37, a(32) = 289 = 17*17, a(33) = 295 = 5*59, a(34) = 305 = 5*61, a(40) = 335 = 5*67, ... Each composite term appears to be a product of two primes from previous terms or a square of a prime from previous terms.
Composite terms are the products of powers of primes that are factors of previous terms. For example, there are terms equal to 17, 17^2, 5*17^2, 59^2, 59*61, 61^2, 61*67, 67^2, 67*73, 17^3, 5*17*59, 71*73, 5*17*61, 73^2, 71*79, 73*79, 5*17*73, 79^2, 61*167, 101^2, 37*277, 5*37*59, 79*139, 107^2, 5*17*139, 5*37*67, 5*37*71, 17^2*47, 61*223, 61*227, 5*17*163, 5*17*167, 71*227, 127^2, 17^2*59, 5*59^2, 17^2*61, 5*61^2, 137^2, 137*139, 139^2, 17^2*67, 5*17*229, 137*149, 5*61*67, 5*59*71, 17^2*73, 5*67^2, 5*61*79, 5*67*73, 5*17^3, ... - Alexander Adamchuk, Jul 28 2006
LINKS
E. PĂ©rez Herrero, Table of n, a(n) for n=1..50000
MATHEMATICA
Do[s=1+Divisors[n]; s1=Flatten[Position[PrimeQ[s], True]]; s2=Part[s, s1]; If[Equal[s2, {2, 3, 11}], Print[n/10]], {n, 1, 50000}] (* Alexander Adamchuk, Jul 28 2006 *)
PROG
(PARI) isok(m) = denominator(bernfrac(10*m)) == 66; \\ Michel Marcus, May 31 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Jul 26 2006
EXTENSIONS
More terms from Alexander Adamchuk, Jul 28 2006
STATUS
approved