login
A119456
Numbers m such that the Bernoulli number B_{10*m} has denominator 66.
30
1, 5, 17, 37, 47, 59, 61, 67, 71, 73, 79, 85, 101, 107, 127, 137, 139, 149, 163, 167, 185, 197, 199, 223, 227, 229, 257, 263, 269, 277, 283, 289, 295, 305, 307, 311, 313, 317, 331, 335, 347, 353, 355, 365, 373, 379, 383, 389, 395, 397, 401, 433, 449, 457, 461
OFFSET
1,2
COMMENTS
Subset of A002181 (inverse of the Euler totient function).
Most terms are primes except for n = 12, 21, 32, 33, 34, 40, ... because a(12) = 85 = 5*17, a(21) = 185 = 5*37, a(32) = 289 = 17*17, a(33) = 295 = 5*59, a(34) = 305 = 5*61, a(40) = 335 = 5*67, ... Each composite term appears to be a product of two primes from previous terms or a square of a prime from previous terms.
Composite terms are the products of powers of primes that are factors of previous terms. For example, there are terms equal to 17, 17^2, 5*17^2, 59^2, 59*61, 61^2, 61*67, 67^2, 67*73, 17^3, 5*17*59, 71*73, 5*17*61, 73^2, 71*79, 73*79, 5*17*73, 79^2, 61*167, 101^2, 37*277, 5*37*59, 79*139, 107^2, 5*17*139, 5*37*67, 5*37*71, 17^2*47, 61*223, 61*227, 5*17*163, 5*17*167, 71*227, 127^2, 17^2*59, 5*59^2, 17^2*61, 5*61^2, 137^2, 137*139, 139^2, 17^2*67, 5*17*229, 137*149, 5*61*67, 5*59*71, 17^2*73, 5*67^2, 5*61*79, 5*67*73, 5*17^3, ... - Alexander Adamchuk, Jul 28 2006
LINKS
E. PĂ©rez Herrero, Table of n, a(n) for n=1..50000
FORMULA
a(n) = A051230(n)/10 = A051229(n)/5.
MATHEMATICA
Do[s=1+Divisors[n]; s1=Flatten[Position[PrimeQ[s], True]]; s2=Part[s, s1]; If[Equal[s2, {2, 3, 11}], Print[n/10]], {n, 1, 50000}] (* Alexander Adamchuk, Jul 28 2006 *)
PROG
(PARI) isok(m) = denominator(bernfrac(10*m)) == 66; \\ Michel Marcus, May 31 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Jul 26 2006
EXTENSIONS
More terms from Alexander Adamchuk, Jul 28 2006
STATUS
approved