login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257582
Lexicographically largest increasing sequence of primes for which the continued square root map (see A257574) produces Pi.
4
5, 17, 37, 53, 131, 181, 263, 317, 859, 887, 1637, 2837, 3413, 5861, 6491, 10531, 13399, 14083, 14563, 21433, 29717, 30529, 31663, 31771, 32069, 32587, 36559, 36809, 39359, 39461, 45319, 46933, 49801, 52391, 52579, 52889, 55871, 57493, 59107, 59539, 64187, 64633, 75377, 77491, 82351, 86587
OFFSET
1,1
COMMENTS
The continued square root map applied to a sequence (x,y,z,...) is CSR(x,y,z,...) = sqrt(x + sqrt(y + sqrt(z + ...))); this is well defined if the logarithm of the terms is O(2^n).
LINKS
Popular Computing (Calabasas, CA), The CSR Function, Vol. 4 (No. 34, Jan 1976), pages PC34-10 to PC34-11. Annotated and scanned copy.
Herman P. Robinson, The CSR Function, Popular Computing (Calabasas, CA), Vol. 4 (No. 35, Feb 1976), pages PC35-3 to PC35-4. Annotated and scanned copy.
PROG
(PARI) (CSR(v, s)=forstep(i=#v, 1, -1, s=sqrt(v[i]+s)); s); a=[5]; for(n=1, 50, print1(a[#a]", "); for(i=primepi(a[#a])+1, oo, CSR(concat(a, vector(9, j, prime(i+j))))>=Pi && (a=concat(a, prime(i))) && break)) \\ The default precision of 38 digits yields correct terms only below 30000. To compute larger values correctly, realprecision must be increased. - M. F. Hasler, May 03 2018
CROSSREFS
Cf. A000796 (Pi), A257764 (analog for e = 2.71828... instead of Pi), A257809 (analog for delta = 4.6692...), A257574.
Sequence in context: A060245 A119456 A264904 * A339988 A273538 A273212
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 03 2015
EXTENSIONS
a(15)-a(46) from Chai Wah Wu, May 06 2015
Edited by M. F. Hasler, May 03 2018
STATUS
approved