OFFSET
1,1
COMMENTS
The continued square root or CSR map applied to a sequence b = (b(1), b(2), b(3), ...) is the number CSR(b) := sqrt(b(1)+sqrt(b(2)+sqrt(b(3)+sqrt(b(4)+...)))).
Taking out a factor sqrt(2), one gets CSR(2, 4, 6, 8, ...) = sqrt(2) CSR(1, 1, 3/8, 1/32, ...) < A002193*A001622 = (sqrt(5)+1)/sqrt(2). - M. F. Hasler, May 01 2018
LINKS
Hiroaki Yamanouchi, Table of n, a(n) for n = 1..400
A. Herschfeld, On Infinite Radicals, Amer. Math. Monthly, 42 (1935), 419-429.
Herman P. Robinson, The CSR Function, Popular Computing (Calabasas, CA), Vol. 4 (No. 35, Feb 1976), pages PC35-3 to PC35-4. Annotated and scanned copy.
EXAMPLE
sqrt(2 + sqrt(4 + sqrt(6 + sqrt(8 + ...)))) = 2.1584768723110397656558534...
PROG
(PARI) (CSR(v, s)=forstep(i=#v, 1, -1, s=sqrt(v[i]+s)); s); t=0; for(N=5, oo, (t==t=Str(CSR([1..2*N]*2)))&&break; print(2*N": "t)) \\ Allows to see the convergence, which is reached when length of vector ~ precision [given as number of digits]. Using Str() to avoid infinite loop when internal representation is "fluctuating". - M. F. Hasler, May 04 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, May 02 2015
EXTENSIONS
a(27)-a(87) from Hiroaki Yamanouchi, May 03 2015
Edited by M. F. Hasler, May 01 2018
STATUS
approved